Skip to main content
Log in

Boundedness in the higher-dimensional fully parabolic chemotaxis-competition system with loop

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with the two-species chemotaxis-competition system with loop

$$\begin{aligned} \left\{ \begin{array}{llll} \partial _{t} u_{1}=d_1\Delta u_{1}-\chi _{11}\nabla \cdot (u_{1}\nabla v_{1}) -\chi _{12}\nabla \cdot (u_{1}\nabla v_{2}) +\mu _{1}u_{1}(1-u_{1}-a_{1}u_{2}),\\ \partial _{t} u_{2}=d_2\Delta u_{2}-\chi _{21}\nabla \cdot (u_{2}\nabla v_{1}) -\chi _{22}\nabla \cdot (u_{2}\nabla v_{2}) +\mu _{2}u_{2}(1-u_{2}-a_{2}u_{1}),\\ \partial _t v_1=d_3\Delta v_{1}-\lambda _{1} v_{1}+\alpha _{11}u_{1}+\alpha _{12}u_{2},\\ \partial _t v_2=d_4\Delta v_{2}-\lambda _{2} v_{2}+\alpha _{21}u_{1}+\alpha _{22}u_{2}, \\ \end{array} \right. \end{aligned}$$

subject to homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset {\mathbb {R}}^{3}\), where \(\chi _{ij}>0\), \(\mu _{i}>0\), \(a_i>0\), \(\alpha _{ij}>0\), \(\lambda _{i}>0\), \(d_k>0\) \((i, j=1, 2, k=1, 2, 3, 4)\). Our main purpose is to extend the global boundedness result to the 3D setting. To address this issue, based on a new coupled function, by selecting sufficiently large \(\mu _1\) and \(\mu _2\), we construct a Gronwall type inequality which directly renders the uniform boundedness of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Black, T., Lankeit, J., Mizukami, M.: On the weakly competitive case in a two-species chemotaxis model. IMA J. Appl. Math. 81, 860–876 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Black, T.: Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete Contin. Dyn. Syst. Ser. B 22, 1253–1272 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Cao, X.: Large time behavior in the logistic Keller–Segel model via maximal sobolev regularity. Discrete Contin. Dyn. Syst. Ser. B 22, 3369–3378 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Espejo, E., Vilches, K., Conca, C.: A simultaneous blow-up problem arising in tumor Modeling. J. Math. Biol. 79(4), 1357–1399 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Gajewski, H., Zacharias, K.: Global behaviour of a reaction–diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Keller, E., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  MATH  Google Scholar 

  11. Knútsdóttir, H., Pálsson, E., Edelstein-Keshet, L.: Mathematical model of macrophage-facilitated breast cancer cells invasion. J. Theor. Biol. 357, 184–199 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Lankeit, J.: Chemotaxis can prevent thresholds on population density. Discrete Contin. Dyn. Syst. Ser. B 20, 1499–1527 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Li, Y.: Emergency of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetic. Discrete Contin. Dyn. Syst. B 24, 5461–5480 (2019)

    MATH  Google Scholar 

  14. Li, X., Wang, Y.: Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B 22, 2717–2729 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Li, X., Wang, Y.: On a fully parabolic chemotaxis system with Lotka–Volterra competitive kinetics. J. Math. Anal. Appl. 471, 584–598 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Lin, K., Xiang, T.: On global solutions and blow-up for a short-ranged chemical signaling loop. J. Nonlinear Sci. 29, 551–591 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Lin, K., Xiang, T.: On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. Calc. Var. (2020). https://doi.org/10.1007/s00526-020-01777-7

    Article  MATH  Google Scholar 

  18. Mizoguchi, N., Winkler, M.: Blow-up in the two-dimensional parabolic Keller–Segel system, preprint

  19. Mizukami, M.: Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal dependent sensitivity. Discrete Contin. Dyn. Syst. Ser. B 22, 2301–2319 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Mizukami, M.: Boundedness and stabilization in a two-species chemotaxis-competiton system of parabolic-parabolic elliptic type. Math. Methods Appl. Sci. 41, 234–249 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Mizukami, M.: Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst. Ser. S 13, 269–278 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Mu, C., Lin, K.: Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 36, 5025–5046 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Pan, X., Wang, L., Zhang, J., Wang, J.: Boundedness in a three-dimensional two-species chemotaxis system with two chemicals. Z. Angew. Math. Phys. (2020). https://doi.org/10.1007/s00033-020-1248-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Stinner, C., Surulescu, C.H., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Tao, Y., Winkler, M.: Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B 20, 3165–3183 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensioanl chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Tello, J., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Tu, X., Mu, C., Zheng, P., Lin, K.: Global dynamics in a two species chemotaxis competition system with two signals. Discrete Contin. Dyn. Syst. 38, 3617–3636 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Tu, X., Mu, C., Qiu, S.: Global asymptotic stability in a parabolic-elliptic chemotaxis system with competitive kinetics and loop. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1783536

    Article  Google Scholar 

  34. Tu, X., Mu, C., Qiu, S.: Boundedness and convergence of constant equilibria in a two-species chemotaxis-competition system with loop. Nonlinear Anal. 198, 111923 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Wang, L.: Improvement of conditions for boundedness in a two-species chemotaxis competition system of parabolic-parabolic-elliptic type. J. Math. Anal. Appl. 484, 123705 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Hong, L., Wang, J., Yu, H., Zhang, Y.: Critical mass for a two-species chemotaxis model with two chemicals in \({\mathbb{R}}^2\). Nonlinearity 32, 4762–4778 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Wang, L., Zhang, J., Mu, C., Hu, X.: Boundedness and stabilization in a two-species chemotaxis system with two Chemicals. Discrete Contin. Dyn. Syst. B 25, 191–221 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100(9), 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24, 809–855 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B 22, 2777–2793 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Xiang, T.: How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Xiang, T.: Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel model. SIAM J. Appl. Math. 78(5), 2420–2438 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Yang, C., Cao, X., Jiang, Z., Zheng, S.: Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source. J. Math. Anal. Appl. 430, 585–591 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Yu, H., Wang, W., Zheng, S.: Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals. Nonlinearity 31, 502–514 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, Q.: Competitive exclusion for a two-species chemotaxis system with two chemicals. Appl. Math. Lett. 83, 27–32 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, Q., Liu, X., Yang, X.: Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals. J. Math. Phys. 58, 111504 (2017). 9 pp

    MathSciNet  MATH  Google Scholar 

  50. Zheng, P., Mu, C.: Global boundedness in a two-competing-species chemotaxis system with two chemicals. Acta Appl. Math. 148, 157–177 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Zheng, P., Mu, C., Mi, Y.: Global stability in a two-competing-species chemotaxis system with two chemicals. Differ. Integral Equ. 31, 547–558 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Zeng, R.: Optimal condition of solutions to a chemotaxis system with two species in a bounded domain. Appl. Math. Lett. 103, 106216 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable suggestions and fruitful comments which lead to significant improvement of this work. This work is funded by Chongqing Post-doctoral Innovative Talent Support program, Natural Science Foundation of Chongqing under Grant cstc2020jcyj-bshX0071, the Fundamental Research Funds for the Central Universities under Grant XDJK2020C054, 2020CQJQY-Z001 and 2019CDJCYJ001, China Postdoctoral Science Foundation under Grant 2020M673102, the NSFC under Grants 11771062 and 11971082, Chongqing Key Laboratory of Analytic Mathematics and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Tu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, X., Mu, C., Qiu, S. et al. Boundedness in the higher-dimensional fully parabolic chemotaxis-competition system with loop. Z. Angew. Math. Phys. 71, 185 (2020). https://doi.org/10.1007/s00033-020-01413-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01413-6

Keywords

Mathematics Subject Classification

Navigation