Skip to main content
Log in

Process Parameters Optimization of Refill Friction Stir Spot Welded Al/Cu Joint by Response Surface Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Refill friction stir spot welding is a new branch of friction stir welding. In this study, the dissimilar Al/Cu joint was acquired by refill friction stir spot welding. A quadratic regression model was established by Box–Behnken design to explore the relationships between the key process parameters of rotational velocity, plunge depth and welding time and the joint tensile shear load. The results show that the rotational velocity is the most dominant factor for tensile shear load, while the welding time and plunge depth are the second and third effective process parameters. The contour map and response surface present that tensile shear load first increases and then decreases with the increase of the investigated process parameters. The maximum tensile shear load of 4.69 kN is acquired at the optimized rotational velocity of 2500 rpm, plunge depth of 1.7 mm and welding time of 6.2 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saremi M L, Mirsalehi S E, and Shamsipur A, Trans Indian Inst Met 70 (2016) 1869.

    Article  Google Scholar 

  2. Ji S, Wang Y, Zhang J, and Li Z, Int J Adv Manuf Technol 90 (2016) 233.

    Google Scholar 

  3. Li WY, Chu Q, Yang XW, Shen J J, Vairis A, and Wang W B, J Mater Process Technol 252 (2018) 69.

    Article  CAS  Google Scholar 

  4. Karthikeyan R, and Balasubramanian V, Int J Adv Manuf Technol 51 (2010) 173.

    Article  Google Scholar 

  5. Ghetiya N D, Patel K M, and Kavar A J, Trans Indian Inst Met 69 (2016) 917.

    Article  CAS  Google Scholar 

  6. Heideman R, Johnson C, and Kou S, Sci Technol Weld Join 15 (2010) 597.

    Article  CAS  Google Scholar 

  7. Manickam S, and Balasubramanian V, Int J Mech Eng 3 (2015) 15.

    Google Scholar 

  8. Siddharth S, and Senthilkumar T, Russ J Non-Ferr Met 57 (2016) 456.

    Article  Google Scholar 

  9. Abbass K M, Hussein S K, and Kudair A A, Int J Eng Sci Res Technol 4 (2015) 514.

    CAS  Google Scholar 

  10. Ji S, Meng X, Zeng Y, Ma L, and Gao S, Mater Des 97 (2016) 175.

    Article  CAS  Google Scholar 

  11. Mehta K P, and Patel R, Key Eng Mater 821 (2019) 215.

    Article  Google Scholar 

  12. Wang X J, Wang X L, Zhang Z K, Wang L, Zhao Q S, and Deng X B, Adv Mater Res 1052 (2014) 509.

    Article  Google Scholar 

  13. Ikumapayi O M, and Akinlabi E T, Mater Today Proc 18 (2019) 2201.

    Article  CAS  Google Scholar 

  14. Reimann M, Goebel J, and dos Santos JF, Mater Des 132 (2017) 283.

    Article  CAS  Google Scholar 

  15. Xu Z, Li Z, Ji S, and Zhang L, J Mater Sci Technol 34 (2018) 878.

    Article  Google Scholar 

  16. Yue Y, Shi Y, Ji S, Wang Y, and Li Z, J Mater Eng Perform 26 (2017) 5064.

    Article  CAS  Google Scholar 

  17. Huang Y, Meng X, Xie Y, Lv Z, Wan L, Cao J, and Feng J. Compos Struct 189 (2018) 627.

    Article  Google Scholar 

  18. Cardillo M E B, Shen J, de Alcântara N G, Conrado A R M and dos Santoset J F, Weld World 63 (2018) 33.

    Article  Google Scholar 

  19. Mohamed M A, Manurung Y H P, and Berhan M N, J Mech Sci Technol 29 (2015) 2323.

    Article  Google Scholar 

  20. Ramachandran K K, Murugan N, and Shashi Kumar S, Int J Adv Manuf Technol 86 (2016) 2373.

    Article  Google Scholar 

  21. Mubiayi M P, and Akinlabi E T, Mater Today Proc 4 (2017) 533.

    Article  Google Scholar 

  22. Ji S D, Wen Q, and Li Z W, J Mater Sci Technol 48 (2020) 23.

    Article  Google Scholar 

  23. Li Z, Gao S, Ji S, Yue Y, and Chai P, J Mater Eng Perform 25 (2016) 1673.

    Article  CAS  Google Scholar 

  24. Shen Z, Yang X, Zhang Z, Cui L, and Li T, Mater Des 44 (2013) 476.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51705339) and the Educational Department of Liaoning Province (No. L201740).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenlei Liu or Zan Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Y., Kong, L., Liu, Z. et al. Process Parameters Optimization of Refill Friction Stir Spot Welded Al/Cu Joint by Response Surface Method. Trans Indian Inst Met 73, 2975–2984 (2020). https://doi.org/10.1007/s12666-020-02100-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02100-w

Keywords

Navigation