Skip to main content

Advertisement

Log in

Energy deposition of heavy-ion beams in neutronless fusion reaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Recent advances in laser-plasma accelerators have made possible the production of high-power beams with very low divergence. In this paper, the carbon heavy-ion beam was used to provide optimal conditions for the ignition of P–\(^{\mathrm {11}}\)B clean fuel pellets using the Deira-4 simulation code. The calculations showed that generating maximum ion heating of about 140 keV requires a laser with an intensity of \(10^{\mathrm {21}}\,\hbox {W}/\hbox {cm}^{\mathrm {2}}\) and a radiation time of 20 ps, which provide medium heating conditions for ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S Atzeni and J Meyer-ter-Vehn, The physics of inertial fusion (Clarendon Press, Oxford, 2004)

    Book  Google Scholar 

  2. E R Harrison, Phys. Rev. Lett. 11, 535 (1963)

    Article  ADS  Google Scholar 

  3. C Maisonnier, Nuovo Cimento 42, 414 (1966)

    Article  Google Scholar 

  4. J Badziak, S Jabłonski and J Wołowski, Plasma Phys. Control. Fusion 49(12B), 651 (2007)

    Article  ADS  Google Scholar 

  5. S Pfalzner, An introduction to inertial confinement fusion (CRC Press Taylor & Francis Group, 2006)

  6. D Jung, Phys. Plasmas 20, 083103 (2013)

    Article  ADS  Google Scholar 

  7. P Fews, P A Norreys, F N Beg, A R Bell, A E Dangor, C N Danson, P Lee and S J Rose, Phys. Rev. Lett73, 1801 (1994)

    Article  ADS  Google Scholar 

  8. R A Snavely, Phys. Rev. Lett85, 2945 (2000)

    Article  ADS  Google Scholar 

  9. E L Clark, K Krushelnick, M Zepf, F N Beg, M Tatarakis, A Machacek, M I K Santala, I Watts, P A Norreys and A E Dangor, Phys. Rev. Lett85, 1654 (2000)

    Article  ADS  Google Scholar 

  10. A Maksimchuk, S Gu, K Flippo, D Umstadter and V Yu Bychenkov, Phys. Rev. Lett84, 4108 (2000)

    Article  ADS  Google Scholar 

  11. J C Fernández, B J Albright, F N Beg, M E Foord, B M Hegelich, J J Honrubia, M Roth, R B Stephens and L Yin, Nucl. Fusion 54, 054006 (2014)

    Article  ADS  Google Scholar 

  12. M Roth et al, Phys. Rev. Lett.  86, 436 (2001)

    Article  ADS  Google Scholar 

  13. S Atzeni and M Tabak, Plasma Phys. Control. Fusion 47(12B), 769 (2005)

    Article  Google Scholar 

  14. M M Basko, Plasma Phys. Control. Fusion 45(12A), 125 (2003)

    Article  ADS  Google Scholar 

  15. T Zh Esirkepov, S V Bulanov, K Nishihara, T Tajima, F Pegoraro, V S Khoroshkov, K Mima, H Daido, Y Kato, Y Kitagawa, K Nagai and S Sakabe, Phys. Rev. Lett89, 175003 (2002)

    Article  ADS  Google Scholar 

  16. O Klimo, J Psikal, J Limpouch and V T Tikhonchuk, Phys. Rev. Spec. Top. 11, 031301 (2008)

    ADS  Google Scholar 

  17. A Henig, Phys. Rev. Lett103, 24 (2009)

    Google Scholar 

  18. A Macchi, S Veghini and F Pegoraro, Phys. Rev. Lett103, 245003 (2009)

    Article  Google Scholar 

  19. A Macchi, M Borghesi and M Passoni, Rev. Mod. Phys85, 751 (2013)

    Article  ADS  Google Scholar 

  20. A Macchi, physics.plasm-ph, arXiv:1712.06443v1 (2017)

  21. L Torrisi, L Calcagno, D Giulietti, M Cutroneo, M Zimbone and J Skala, Nucl. Instrum. Meth. Phys. Res. B 355, 221 (2015)

    Article  ADS  Google Scholar 

  22. J Kim, K Hong Pae, I W Choi, C L Lee, H T Kim, H Singhal, J Sung, S K Lee, H W Lee, P V Nickles, T M Jeong, C M Kim and C H Nam, Phys. Plasmas 23, 070701 (2016)

  23. J J Honrubia, J C Fernández, M Temporal, B M Hegelich and J Meyer-ter-Vehn, Phys. Plasmas 16, 102701 (2009)

    Article  ADS  Google Scholar 

  24. J Domanski, J Badziak and S Jabłoński, J. Appl. Phys. 113, 173302 (2013)

    Article  ADS  Google Scholar 

  25. J C Fernández, B J Albright, K A Flippo, B M Hegelich, T J Kwan, M J Schmitt and L Yin, J. Phys.: Conf. Ser. 112, 022051 (2008)

    Google Scholar 

  26. M Roth, Plasma Phys. Control. Fusion 51, 014004 (2009)

    Article  ADS  Google Scholar 

  27. B M Hegelich et al, Nucler Fusion 51, 083011 (2011)

    Article  ADS  Google Scholar 

  28. S Atzeni, Phys. Plasmas 6, 3316 (1999)

    Article  ADS  Google Scholar 

  29. M Cipriani et al, J. Instrum. 14, C01027 (2019)

    Article  Google Scholar 

  30. S Eliezer, Z Henis, N Nissim, S Vinikman Pinhasi and J Martinez Val, Laser Particle Beams 33, 577 (2015)

  31. M M Basko, DEIRA. A 1-D, 3-T Hydrodynamic Code for Simulating ICF Targets Driven by Fast Ion Beams, Version 4, Institute for Theoretical and Experimental Physics, Moscow (2001), https://pdfs.semanticscholar.org/2667/bf5e1f9348f23595aa6afc7ad9bf7daea034.pdf

  32. M M Basko, Sov. J. Plasma Phys10, 689 (1984)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotodeheian, R., Mahdavi, M. Energy deposition of heavy-ion beams in neutronless fusion reaction. Pramana - J Phys 94, 148 (2020). https://doi.org/10.1007/s12043-020-02018-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02018-4

Keywords

PACS Nos

Navigation