Skip to main content
Log in

Correlation Between the Behavior of \({\alpha}\)-Decay Half-Life Time and \(\boldsymbol{Q}\) Values with Neutron Number Variation of Daughter Nuclei

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

\(\alpha\) decay of 2000 parent heavy and superheavy nuclei, with atomic numbers in the range \(Z=80\) to \(Z=122\), is considered. We calculated the half-life time, \(T_{\alpha}\), of each nucleus using the density-dependent cluster model with M3Y-effective nucleon–nucleon interaction. The \(Q_{\alpha}\) values needed for calculation of \(T_{\alpha}\) were extracted from four different mass tables used frequently in \(\alpha\)-decay calculation. These tables are WS4, WS3, FRDM(2012), and DZ tables. The present study shows to what extent the behavior and value of \(T_{\alpha}\), as the nucleon number varies, depends on choosing the mass table used to extract \(Q_{\alpha}\) values. For this purpose, we studied the variation of log \(T_{\alpha}\) and the corresponding \(1/Q_{\alpha}\) with the neutron number of the daughter nucleus, \(N_{d}\), using the four different mass tables. The results show that the log \(T_{\alpha}\) variation follows the corresponding \(1/Q_{\alpha}\) variation. The two mass tables WS3 and WS4 predict almost the same log \(T_{\alpha}\) variation and agree in the magic and semi-magic numbers. For FRDM(2012) and DZ tables the variation of log \(T_{\alpha}\) with \(N_{d}\) follows the same \(1/Q_{\alpha}\) variation but the magic numbers deduced from these two tables do not agree with each other and almost differ from those predicted from WS3 and WS4. FRDM(2012) tables predict the main deep minimum at \(N_{d}=128\) instead of the magic neutron number \(N_{d}=126\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. J. Karol, R. C. Barber, B. M. Sherrill, E. Vardaci, and E. Yamazaki, Pure Appl. Chem. 88, 139 (2016).

    Article  Google Scholar 

  2. P. J. Karol, R. C. Barber, B. M. Sherrill, E. Vardaci, and E. Yamazaki, Pure Appl. Chem. 88, 155 (2016).

    Article  Google Scholar 

  3. S. A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sadhukhan, B. Schuetrumpf, N. Schunck, and P. Schwerdtfeger, Rev. Mod. Phys. 91, 011001 (2019).

    Article  ADS  Google Scholar 

  4. I. V. Panov, Phys. At. Nucl. 81, 68 (2018).

    Article  Google Scholar 

  5. S. Goriely and G. Martínez Pinedo, Nucl. Phys. A 944, 158 (2015).

    Article  ADS  Google Scholar 

  6. K. P. Santhosh and B. Priyanka, Nucl. Phys. A 940, 21 (2015).

    Article  ADS  Google Scholar 

  7. W. M. Seif, Hisham Anwer, and A. R. Abdulghany, Ann. Phys. (N.Y.) 401, 149 (2019).

    Article  ADS  Google Scholar 

  8. S. K. Patra, C.-L. Wu, C. R. Praharaj, and R. K. Gupta, Nucl. Phys. A 651, 117 (1999).

    Article  ADS  Google Scholar 

  9. P. Mohr, Phys. Rev. C 73, 031301 (2006).

    Article  ADS  Google Scholar 

  10. H. Toki, H. Shen, K. Sumiyoshi, D. Hirata, H. Sugahara, and I. Tanihata, J. Phys. G 24, 1479 (1998).

    Article  ADS  Google Scholar 

  11. T. Sahoo, S. K. Biswal, and A. Acharya, Phys. Part. Nucl. Lett. 15, 585 (2018).

    Article  Google Scholar 

  12. P. Möller, W. D. Myers, H. Sagawa, and S. Yoshida, Phys. Rev. Lett. 108, 052501 (2012).

    Article  ADS  Google Scholar 

  13. W. D. Myers and W. J. Światecki, Nucl. Phys. A 601, 141 (1996).

    Article  ADS  Google Scholar 

  14. K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003).

    Article  ADS  Google Scholar 

  15. N. Wang, M. Liu, and X. Wu, Phys. Rev. C 81, 044322 (2010).

    Article  ADS  Google Scholar 

  16. N. Wang, Z. Liang, M. Liu, and X. Wu, Phys. Rev. C 82, 044304 (2010).

    Article  ADS  Google Scholar 

  17. M. Liu, N. Wang, Y. Deng, and X. Wu, Phys. Rev. C 84, 014333 (2011).

    Article  ADS  Google Scholar 

  18. J. Duflo and A. P. Zuker, Phys. Rev. C 52, R23(R) (1995).

  19. A. Sobiczewski, Yu. A. Litvinov, and M. Palczewski, At. Data Nucl. Data Tables 119, 1 (2018).

    Article  ADS  Google Scholar 

  20. M. Ismail, A. Y. Ellithi, A. Adel, and Hisham Answer, Int. J. Mod. Phys. E 25, 1650004 (2016).

    Article  ADS  Google Scholar 

  21. M. Ismail, A. Y. Ellithi, M. M. Botros, and A. Adel, Phys. At. Nucl. 73, 1660 (2010).

    Article  Google Scholar 

  22. M. Ismail, A. Y. Ellithi, A. Adel, and A. R. Abdulghany, J. Phys. G: Nucl. Part. Phys. 42, 075108 (2015).

    Article  ADS  Google Scholar 

  23. G. Gamow, Z. Phys. 51, 204 (1928).

    Article  ADS  Google Scholar 

  24. R. W. Gurney and E. U. Condon, Phys. Rev. 33, 127 (1929).

    Article  ADS  Google Scholar 

  25. Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, et al., Phys. Rev. C 87, 054621 (2013).

    Article  ADS  Google Scholar 

  26. A. I. Budaca and I. Silisteanu, J. Phys.: Conf. Ser. 413, 012027 (2013).

    Google Scholar 

  27. M. Ismail, W. M. Seif, A. Adel, and A. Abdurrahman, Nucl. Phys. A 958, 202 (2017).

    Article  ADS  Google Scholar 

  28. C. Xu and Z. Ren, Phys. Rev. C 73, 041301(R) (2006).

  29. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  30. C. Xu and Z. Ren, Nucl. Phys. A 753, 174 (2005).

    Article  ADS  Google Scholar 

  31. N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014).

    Article  ADS  Google Scholar 

  32. N. Wang and M. Liu, Phys. Rev. C 84, 051303 (2011).

    Article  ADS  Google Scholar 

  33. P. Müller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016).

    Article  ADS  Google Scholar 

  34. M. Ismail, A. Y. Ellithi, and F. Salah, Phys. Rev. C 66, 017601 (2002).

    Article  ADS  Google Scholar 

  35. T. Belgya, O. Bersillon, R. Capote, T. Fukahori, Ge Zhigang, S. Goriely, M. Herman, A. V. Ignatyuk, S. Kailas, A. J. Koning, P. Oblozinsky, V. Plujko, and P. Young, Handbook for Calculations of Nuclear Reaction Data (IAEA, Vienna, 2006).

    Google Scholar 

  36. J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (N. Y.) 105, 427 (1977).

    Article  ADS  Google Scholar 

  37. A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and A. Budzanowski, Nucl. Phys. A 384, 65 (1982).

    Article  ADS  Google Scholar 

  38. G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys. A 284, 399 (1977).

    Article  ADS  Google Scholar 

  39. R. E. Langer, Phys. Rev. 51, 669 (1937).

    Article  ADS  Google Scholar 

  40. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  41. M. Ismail and A. Adel, Phys. Rev. C 90, 064624 (2014).

    Article  ADS  Google Scholar 

  42. M. Ismail, A. Adel, and M. M. Botros, Phys. Rev. C 93, 054618 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Abdulghany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, M., Abdurrahman, A. & Abdulghany, A.R. Correlation Between the Behavior of \({\alpha}\)-Decay Half-Life Time and \(\boldsymbol{Q}\) Values with Neutron Number Variation of Daughter Nuclei. Phys. Atom. Nuclei 83, 691–699 (2020). https://doi.org/10.1134/S1063778820050130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820050130

Navigation