Skip to main content
Log in

Global Calculations of Beta-Decay Properties Based on the Fayans Functional

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An effective approximation to a fully self-consistent global description of beta-decay properties of nuclei within the theory of finite Fermi systems is presented. It is based on describing the ground state properties within the energy density functional proposed by Fayans and coauthors (DF3) and on the continuum quasiparticle random-phase approximation (CQRPA). The accuracy of global DF3 \(+\) CQRPA calculations is analyzed. For more than 200 (quasi)spherical nuclei with \(Z=18\) to 51 having half-lives in the range of \(T_{1/2}<5\) s, the experimental half-lives and delayed neutrons emission probabilities are described within a factor of two and three, respectively. A comparison is performed with the results of similar calculations based on state-of-the-art self-consistent models : the relativistic spherical RHB \(+\) RQRPA approach and deformed finite-amplitude method (FAM) and HFB \(+\) QRPA approaches, as well as the interacting shell model. A detailed analysis of beta-decay properties in the nickel isotopic chain that were obtained in various calculations allows us for determining basic mechanisms responsible for the sudden shortening of the half-lives that was found experimentally at RIKEN for isotopes heavier than the doubly magic \({}^{78}\)Ni nucleus. These are the contributions of first-forbidden (FF) transitions and multiphonon configurations and spin inversion of the respective ground states. The acceleration effect in question is highly sensitive to the balance of the contributions of Gamow–Teller (GT) and FF transitions to the total beta-decay rate. It is shown that, in nickel isotopes, the ratio of these contributions takes different values before and after the neutron-shell crossing at \(N=50\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. E. Fortov, B. Yu. Sharkov, and H. Stöker, Phys. Usp. 55, 582 (2012).

    Article  ADS  Google Scholar 

  2. https://fribusers.org/documents/2019/FRIB400-Upgrade.pdf.

  3. Center for the Study of Extreme Light Fields XCELS—IPF RAN. http://www.xcels.iapras.ru.

  4. L. V. Grigorenko, B. Yu. Sharkov, A. S. Fomichev, A. L. Barabanov, V. Bart, A. A. Bezbakh, S. L. Bogomolov, M. S. Golovkov, A. V. Gorshkov, S. N. Dmitriev, V. K. Eremin, S. N. Ershov, M. V. Zhukov, I. V. Kalagin, A. V. Karpov, T. Katayama, et al., Phys. Usp. 62, 675 (2019).

    Article  ADS  Google Scholar 

  5. L. Shtul, in Proceedings of the 10th International Conference on Direct Reactions with Exotic Beams (DREB2018), p. 102.

  6. R. Reifarth and Yu. A. Litvinov, Phys. Rev. ST Accel. Beams 17, 014701 (2014).

    Article  ADS  Google Scholar 

  7. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 82, 560 (2019).

    Article  Google Scholar 

  8. Q. Zhi, E. Caurier, J. J. Cuenca-García, K. Langanke, G. Martínez-Pinedo, and K. Sieja, Phys. Rev. C 87, 025803 (2013).

  9. Energy Density Functional Methods for Atomic Nuclei, Ed. by N. Schunck (IOP Publ., Bristol, 2019).

    Google Scholar 

  10. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  11. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  12. I. N. Borzov, Phys. Rev. C 67, 025802 (2003).

    Article  ADS  Google Scholar 

  13. I. N. Borzov, E. E. Sapershtein, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Part. Nucl. 12, 338 (1981).

    Google Scholar 

  14. I. N. Borzov and S. Goriely, Phys. Rev. C 62, 035501 (2000).

    Article  ADS  Google Scholar 

  15. I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, G. Neyens, and N. Severijns, Eur. Phys. J. A 45, 159 (2010).

    Article  ADS  Google Scholar 

  16. A. B. D’yachkov, V. A. Firsov, A. A. Gorkunov, A. V. Labozin, S. M. Mironov, E. E. Saperstein, S. V. Tolokonnikov, G. O. Tsvetkov, and V. Y. Panchenko, Eur. Phys. J. A 53, 13 (2017).

    Article  ADS  Google Scholar 

  17. T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev. C 93, 025805 (2016).

    Article  ADS  Google Scholar 

  18. M. T. Mustonen, T. Shafer, Z. Zenginerler, and J. Engel, Phys. Rev. C 90, 024308 (2014).

    Article  ADS  Google Scholar 

  19. K. Yoshida, Phys. Rev. C 99, 025805 (2019).

    Article  Google Scholar 

  20. P. Möller, M. R. Mumpower, T. Kawano, and W. D. Myers, At. Data Nucl. Data Tables 125, 1 (2019).

    Article  ADS  Google Scholar 

  21. Z. Y. Xu et al., Phys. Rev. Lett. 113, 032505 (2014).

    Article  ADS  Google Scholar 

  22. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, and Nguyen Van Giai, Phys. Rev. C 90, 044320 (2014).

    Article  ADS  Google Scholar 

  23. F. Nowacki, A. Poves, E. Caurier, and B. Bounthong, arXiv: 1605.05103 [nucl-th].

  24. T. S. Santamaria, P. Doornebal, et al., Nat. Phys. 53, 569 (2019).

    Google Scholar 

  25. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei,. (Nauka, Moscow, 1983, 2nd ed; Interscience, New York, 1967, transl. 1st ed.).

  26. J. Margueron, S. Goriely, M. Grasso, G. Colò, and H. Sagawa, J. Phys. G: Nucl. Part. Phys. 36, 125103 (2009).

    Article  ADS  Google Scholar 

  27. G. F. Bertsch and R. A. Broglia, Oscillations in Finite Quantum Systems (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  28. G. V. Kolomiytsev, M. L. Gorelik, and M. H. Urin, Eur. Phys. J. 54, 228 (2018).

    Article  ADS  Google Scholar 

  29. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 79, 1030 (2016).

    Article  Google Scholar 

  30. X. Z. Liang, B. Singh, et al., Nucl. Data Sheets (2020, in press).

  31. AME-2016 Collab. (W. J. Huang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu), Chin. Phys. C 41, 030002 (2017).

    Article  Google Scholar 

  32. G. Audi, F. G. Kondev, Meng Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).

    Article  ADS  Google Scholar 

  33. I. S. Towner, E. K. Warburton, and G. T. Garvey, Ann. Phys. (N.Y.) 66, 674 (1971).

    Article  ADS  Google Scholar 

  34. P. T. Hosmer, H. Schatz, A. Aprahamian, O. Arndt, R. R. C. Clement, A. Estrade, K.-L. Kratz, S. N. Liddick, P. F. Mantica, W. F. Mueller, F. Montes, A. C. Morton, M. Ouellette, E. Pellegrini, B. Pfeiffer, P. Reeder, et al., Phys. Rev. Lett. 94, 112501 (2005).

    Article  ADS  Google Scholar 

  35. http://nndc.bnl.gov.

  36. E. O. Sushenok, A. P. Severyukhin, N. N. Arsenyev, and I. N. Borzov, Phys. At. Nucl. 81, 24 (2018).

    Article  Google Scholar 

  37. Y. F. Niu, Z. M. Niu, G. Colò, and E. Vigezzi, Phys. Rev. Lett. 114, 142501 (2015).

    Article  ADS  Google Scholar 

  38. Y. F. Niu, Z. M. Niu, G. Colò, and E. Vigezzi, Phys. Lett. B 780, 325 (2018).

    Article  ADS  Google Scholar 

  39. V. I. Tselyaev, Phys. Rev. C 75, 024306 (2007).

    Article  ADS  Google Scholar 

  40. C. Robin and E. Litvinova, Eur. Phys. J. A 52, 205 (2016).

    Article  ADS  Google Scholar 

  41. M. F. Alshudifat, R. Grzywacz, M. Madurga, C. J. Gross, K. P. Rykaczewski, J. C. Batchelder, C. Bingham, I. N. Borzov, N. T. Brewer, L. Cartegni, A. Fijałkowska, J. H. Hamilton, J. K. Hwang, S. V. Ilyushkin, et al., Phys. Rev. C 93, 044325 (2016).

    Article  ADS  Google Scholar 

  42. B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014).

    Article  ADS  Google Scholar 

  43. I. N. Borzov, Phys. At. Nucl. 79, 910 (2016).

    Article  Google Scholar 

  44. I. N. Borzov, Phys. At. Nucl. 81, 680 (2018).

    Article  Google Scholar 

  45. I. N. Borzov, in Proceedings of the International Symposium on Exotic Nuclei (EXON-2018), Petrozavodsk, Russia (2019).

  46. M. R. Mumpower, T. Kawano, and P. Möller, Phys. Rev. C 94, 064317 (2016).

    Article  ADS  Google Scholar 

  47. R. Yokohama, R. Grzywacz, B. C. Rasco, N. Brewer, K. P. Rykaczewski, I. Dillmann, J. L. Tain, S. Nishimura, D. S. Ahn, A. Algora, J. M. Allmond, J. Agramunt, H. Baba, S. Bae, C. G. Bruno, R. Caballero-Folch, et al., Phys. Rev. C 100, 031302(R) (2019).

  48. P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).

    Article  ADS  Google Scholar 

  49. R. P. de Groote, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. Day Goodacre, G. J. Farooq-Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, W. Gins, J. D. Holt, Á. Koszorús, K. M. Lynch, T. Miyagi, et al., Nat. Phys. 16, 620 (2020). https://doi.org/10.1038/s41567-020-0868-y

    Article  Google Scholar 

  50. E. E. Saperstein, I. N. Borzov, and S. V. Tolokonnikov, JETP Lett. 104, 218 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Yu.S. Lutostansky and S.V. Tolo- konnikov for stimulating discussions and help.

Funding

This work was supported in part by Russian Foundation for Basic Research (project no. 18-02-00670) and by Department of Neutrino Processes at National Research Center Kurchatov Institute.

I am grateful to IAEA for support of my participation in the Second and Third Coordination Meetings on the Research Project Development of a Reference Database for Beta-Delayed Neutron Emission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Borzov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, I.N. Global Calculations of Beta-Decay Properties Based on the Fayans Functional. Phys. Atom. Nuclei 83, 700–713 (2020). https://doi.org/10.1134/S1063778820050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820050087

Navigation