Skip to main content
Log in

CP Violating Phase Originated from Right-handed Neutrino Mixing

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We propose an idea that the observed CP violation in neutrino oscillation is originated from the phase in right-handed neutrino mixing by seesaw mechanism. We add small breaking terms \(M_{ij}N_{R_{i}}N_{R_{j}}\) in the model based on \(A_{4}\) symmetry to generate non-diagonal right-handed neutrino mixing, which will give a small correction to TBM mixing via seesaw mechanism with nonzero reactor angle and CP violating phase. We estimate the CP violating phase by investigating the process of leptogenesis due to the decay of right-handed neutrino.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H. Ishino, Y. Itow, T. Kajita, J. Kameda, S. Kasuga, K. Kobayashi, Y. Kobayashi, Y. Koshio, M. Miura, M. Nakahata, S. Nakayama, et al. (SK Collab.), Phys. Rev. Lett. 81, 8 (1998).

    Google Scholar 

  2. Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. D. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, et al. (SNO Collab.), Phys. Rev. Lett. 89, 1 (2002).

    Google Scholar 

  3. Y. Abe, C. Aberle, T. Akiri, J. C. dos Anjos, F. Ardellier, A. F. Barbosa, A. Baxter, M. Bergevin, A. Bernstein, T. J. C. Bezerra, L. Bezrukhov, E. Blucher, M. Bongrand, N. S. Bowden, C. Buck, J. Busenitz, et al. (Double Chooz Collab.), Phys. Rev. Lett. 108, 131801 (2012).

    Article  ADS  Google Scholar 

  4. F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, K. Boddy, R. L. Brown, B. Cai, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, et al. (Daya Bay Collab.), Phys. Rev. Lett. 108, 171803 (2012).

    Article  ADS  Google Scholar 

  5. P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B 530, 167 (2002).

    Article  ADS  Google Scholar 

  6. D. Borah, Nucl. Phys. B 876, 575 (2013).

    Article  ADS  Google Scholar 

  7. N. Cabibbo, Phys. Lett. B 72, 333 (1978).

    Article  ADS  Google Scholar 

  8. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

    Article  ADS  Google Scholar 

  9. M. A. Acero, P. Adamson, L. Aliaga, T. Alion, V. Allakhverdian, N. Anfimov, A. Antoshkin, E. Arrieta-Diaz, A. Aurisano, A. Back, C. Backhouse, M. Baird, N. Balashov, B. A. Bambah, K. Bays, B. Behera, et al. (NOvA Collab.), Phys. Rev. D 98, 032012 (2018).

    Article  ADS  Google Scholar 

  10. K. Abe, R. Akutsu, A. Ali, J. Amey, C. Andreopoulos, L. Anthony, M. Antonova, S. Aoki, A. Ariga, Y. Ashida, Y. Azuma, S. Ban, M. Barbi, G. J. Barker, G. Barr, C. Barry, et al. (T2K Collab.), Phys. Rev. Lett. 121, 171802 (2018).

    Article  ADS  Google Scholar 

  11. Y. Shimizu, M. Tanimoto, and K. Yamamoto, Mod. Phys. Lett. A 30, 1550002 (2015).

    Article  ADS  Google Scholar 

  12. G. Dattoli and K. V. Zhukovsky, Eur. Phys. J. C 55, 547 (2008).

    Article  ADS  Google Scholar 

  13. Shao-Feng Ge, Hong-Jian He, and Fu-Rong Yin, JCAP 05, 017 (2010).

  14. Hong-Jian He and Fu-Rong Yin, Phys. Rev. D 84, 033009 (2011).

    Article  ADS  Google Scholar 

  15. K. Zhukovsky and F. Melazzini, Eur. Phys. J. C 76, 462 (2016).

    Article  ADS  Google Scholar 

  16. K. Zhukovsky and A. Borisov, Eur. Phys. J. C 76, 637 (2016).

    Article  ADS  Google Scholar 

  17. K. V. Zhukovsky, Phys. At. Nucl. 80, 690 (2017).

    Article  Google Scholar 

  18. K. Zhukovsky and A. A. Davydova, Eur. Phys. J. C 79, 385 (2019).

    Article  ADS  Google Scholar 

  19. A. A. Davydova and K. V. Zhukovsky, Phys. At. Nucl. 82, 281 (2019).

    Article  Google Scholar 

  20. Moinul Hossain Rahat, Pierre Ramond, and Bin Xu, Phys. Rev. D 98, 055030 (2018).

    Article  ADS  Google Scholar 

  21. M. Jay Pérez, Moinul Hossain Rahat, Pierre Ramond, Alexander J. Stuart, and Bin Xu, Phys. Rev. D 100, 075008 (2019).

    Article  ADS  Google Scholar 

  22. G. Dattoli and K. Zhukovsky, Eur. Phys. J. C 52, 591 (2007).

    Article  ADS  Google Scholar 

  23. K. V. Zhukovsky and D. Dattoli, Phys. At. Nucl. 71, 1807 (2008).

    Article  Google Scholar 

  24. H. Fritzsch and P. Minkowski, Phys. Lett. B 62, 421 (1976).

    Article  ADS  Google Scholar 

  25. H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010).

    Article  ADS  Google Scholar 

  26. Ernest Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001).

    Article  ADS  Google Scholar 

  27. M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E. Takasugi, Phys. Lett. B 102, 323 (1981).

    Article  ADS  Google Scholar 

  28. M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

    Article  ADS  Google Scholar 

  29. D. Adey, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, S. M. Chen, Y. Chen, Y. X. Chen, et al. (Daya Bay Collab.), Phys. Rev. Lett. 121, 241805 (2018).

    Article  ADS  Google Scholar 

  30. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and Th. Schwetz, NuFIT 4.0, www.nu-fit.org., Accessed 2018.

Download references

ACKNOWLEDGMENTS

We wish to thank Associate Professor Yan Li at Harbin Institute of Technology for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Jun Chen.

Appendices

\(S_{4}\) SYMMETRY

\(S_{4}\) group covers all permutations among four objects \((x_{1},x_{2},x_{3},x_{4})\), i.e. \((x_{1},x_{2},x_{3},x_{4})\rightarrow(x_{i},x_{j},x_{k},x_{l})\) and includes 24 elements as in literature [25]

$$a_{1}:(x_{1},x_{2},x_{3},x_{4}),\quad a_{2}:(x_{2},x_{1},x_{4},x_{3}),$$
$$a_{3}:(x_{3},x_{4},x_{1},x_{2}),\quad a_{4}:(x_{4},x_{3},x_{2},x_{1}),$$
$$b_{1}:(x_{1},x_{4},x_{2},x_{3}),\quad b_{2}:(x_{4},x_{1},x_{3},x_{2}),$$
$$b_{3}:(x_{2},x_{3},x_{1},x_{4}),\quad b_{4}:(x_{3},x_{2},x_{4},x_{1}),$$
$$c_{1}:(x_{1},x_{3},x_{4},x_{2}),\quad c_{2}:(x_{3},x_{1},x_{2},x_{4}),$$
$$c_{3}:(x_{4},x_{2},x_{1},x_{3}),\quad c_{4}:(x_{2},x_{4},x_{3},x_{1}),$$
$$d_{1}:(x_{1},x_{2},x_{4},x_{3}),\quad d_{2}:(x_{2},x_{1},x_{3},x_{4}),$$
$$d_{3}:(x_{4},x_{3},x_{1},x_{2}),\quad d_{4}:(x_{3},x_{4},x_{2},x_{1}),$$
$$e_{1}:(x_{1},x_{3},x_{2},x_{4}),\quad e_{2}:(x_{3},x_{1},x_{4},x_{2}),$$
$$e_{3}:(x_{2},x_{4},x_{1},x_{3}),\quad e_{4}:(x_{4},x_{2},x_{3},x_{1}),$$
$$f_{1}:(x_{1},x_{4},x_{3},x_{2}),\quad f_{2}:(x_{4},x_{1},x_{2},x_{3}),$$
$$f_{3}:(x_{3},x_{2},x_{1},x_{4}),\quad f_{4}:(x_{2},x_{3},x_{4},x_{1}),$$
(A.1)

which are written in cycle representation as

$$a_{1}:e,\quad a_{2}:(12)(34),$$
$$a_{3}:(13)(24),\quad a_{4}:(14)(32),$$
$$b_{1}:(234),\quad b_{2}:(124),\quad b_{3}:(132),\quad b_{4}:(314),$$
$$c_{1}:(243),\quad c_{2}:(231),\quad c_{3}:(134),\quad c_{4}:(142),$$
$$d_{1}:(34),\quad d_{2}:(12),\quad d_{3}:(1324),\quad d_{4}:(2314),$$
$$e_{1}:(23),\quad e_{2}:(2431),\quad e_{3}:(1342),\quad e_{4}:(14),$$
$$f_{1}:(24),\quad f_{2}:(1234),$$
$$f_{3}:(13),\quad f_{4}:(1432).$$
(A.2)

\(S_{4}\) is cube symmetry group and the elements can also be written as

$$a_{1}=\left(\begin{matrix}1&0&0\\ 0&1&0\\ 0&0&1\end{matrix}\right),\quad a_{2}=\left(\begin{matrix}1&0&0\\ 0&-1&0\\ 0&0&-1\end{matrix}\right),$$
$$a_{3}=\left(\begin{matrix}-1&0&0\\ 0&1&0\\ 0&0&-1\end{matrix}\right),\quad a_{4}=\left(\begin{matrix}-1&0&0\\ 0&-1&0\\ 0&0&1\end{matrix}\right),$$
$$b_{1}=\left(\begin{matrix}0&0&1\\ 1&0&0\\ 0&1&0\end{matrix}\right),\quad b_{2}=\left(\begin{matrix}0&0&1\\ -1&0&0\\ 0&-1&0\end{matrix}\right),$$
$$b_{3}=\left(\begin{matrix}0&0&-1\\ 1&0&0\\ 0&-1&0\end{matrix}\right),\quad b_{4}=\left(\begin{matrix}0&0&-1\\ -1&0&0\\ 0&1&0\end{matrix}\right),$$
$$c_{1}=\left(\begin{matrix}0&1&0\\ 0&0&1\\ 1&0&0\end{matrix}\right),\quad c_{2}=\left(\begin{matrix}0&1&0\\ 0&0&-1\\ -1&0&0\end{matrix}\right),$$
$$c_{3}=\left(\begin{matrix}0&-1&0\\ 0&0&1\\ -1&0&0\end{matrix}\right),\quad c_{4}=\left(\begin{matrix}0&-1&0\\ 0&0&-1\\ 1&0&0\end{matrix}\right),$$
$$d_{1}=\left(\begin{matrix}1&0&0\\ 0&0&1\\ 0&1&0\end{matrix}\right),\quad d_{2}=\left(\begin{matrix}1&0&0\\ 0&0&-1\\ 0&-1&0\end{matrix}\right),$$
$$d_{3}=\left(\begin{matrix}-1&0&0\\ 0&0&1\\ 0&-1&0\end{matrix}\right),\quad d_{4}=\left(\begin{matrix}-1&0&0\\ 0&0&-1\\ 0&1&0\end{matrix}\right),$$
$$e_{1}=\left(\begin{matrix}0&1&0\\ 1&0&0\\ 0&0&1\end{matrix}\right),\quad e_{2}=\left(\begin{matrix}0&1&0\\ -1&0&0\\ 0&0&-1\end{matrix}\right),$$
$$e_{3}=\left(\begin{matrix}0&-1&0\\ 1&0&0\\ 0&0&-1\end{matrix}\right),\quad e_{4}=\left(\begin{matrix}0&-1&0\\ -1&0&0\\ 0&0&1\end{matrix}\right),$$
$$f_{1}=\left(\begin{matrix}0&0&1\\ 0&1&0\\ 1&0&0\end{matrix}\right),\quad f_{2}=\left(\begin{matrix}0&0&1\\ 0&-1&0\\ -1&0&0\end{matrix}\right),$$
$$f_{3}=\left(\begin{matrix}0&0&-1\\ 0&1&0\\ -1&0&0\end{matrix}\right),\quad f_{4}=\left(\begin{matrix}0&0&-1\\ 0&-1&0\\ 1&0&0\end{matrix}\right).$$
(A.3)

Generally elements are classified by symmetry operations as follows: \(T\) represents the element generated by rotating around coordinate axes which includes 3 axes \(x,y,z\): rotating \(\pi\) for 2-order element and \(\pm\frac{1}{2}\pi\) for 4-order element; \(S\) represents 2-order element generated by rotating around axes connecting the midpoints in two opposite edges which include 6 axes. \(R\) represents 3-order element generated by rotating around body diagonals which include 4 axes. The elements are classified by axes as follows

$$T\ axis:\{a_{2},a_{3},a_{4},d_{3},d_{4},e_{2},e_{3},f_{2},f_{4}\},$$
$$R\ axis:\{b_{1},b_{2},b_{3},b_{4},c_{1},c_{2},c_{3},c_{4}\},$$
$$S\ axis:\{d_{1},d_{2},e_{1},e_{4},f_{1},f_{3}\},$$
(A.4)

and by the order of element as

$$h=1:\{a_{1}\},$$
$$h=2:\{a_{2},a_{3},a_{4},d_{1},d_{2},e_{1},e_{4},f_{1},f_{3}\},$$
$$h=3:\{b_{1},b_{2},b_{3},b_{4},c_{1},c_{2},c_{3},c_{4}\},$$
$$h=4:\{d_{3},d_{4},e_{2},e_{3},f_{2},f_{4}\}.$$
(A.5)

Elements are classified into conjugate classes as

$$C_{1}(h=1):\{a_{1}\},$$
$$C_{3}(h=2):\{a_{2},a_{3},a_{4}\},$$
$$C_{6}(h=2):\{d_{1},d_{2},e_{1},e_{4},f_{1},f_{3}\},$$
$$C_{8}(h=3):\{b_{1},b_{2},b_{3},b_{4},c_{1},c_{2},c_{3},c_{4}\},$$
$$C_{6}^{\prime}(h=4):\{d_{3},d_{4},e_{2},e_{3},f_{2},f_{4}\}.$$
(A.6)

Permutation group or symmetric group \(S_{n}\) includes two generators which could be chosen one cycle of \(n\) length, e.g. \((123\cdots n)\) and one cycle of its neighboring objects e.g. \((12)\). It could be easily verified by proving \((j\quad j+1)=(123\cdots n)(j-1\quad j)(123\cdots n)^{-1}\). For example, from Eq. (32), we could choose \(d_{1}\) and corresponding \(n\)-length cycle \(f_{2}\) as generators of \(S_{4}\).

Appendix B

\(A_{4}\) SYMMETRY

\(A_{4}\) group covers all even permutations of four objects, which is subgroup of \(S_{4}\) and includes 12 elements as follows

$$a_{1}=\left(\begin{matrix}1&0&0\\ 0&1&0\\ 0&0&1\end{matrix}\right),\quad a_{2}=\left(\begin{matrix}1&0&0\\ 0&-1&0\\ 0&0&-1\end{matrix}\right),$$
$$a_{3}=\left(\begin{matrix}-1&0&0\\ 0&1&0\\ 0&0&-1\end{matrix}\right),\quad a_{4}=\left(\begin{matrix}-1&0&0\\ 0&-1&0\\ 0&0&1\end{matrix}\right),$$
$$b_{1}=\left(\begin{matrix}0&0&1\\ 1&0&0\\ 0&1&0\end{matrix}\right),\quad b_{2}=\left(\begin{matrix}0&0&1\\ -1&0&0\\ 0&-1&0\end{matrix}\right),$$
$$b_{3}=\left(\begin{matrix}0&0&-1\\ 1&0&0\\ 0&-1&0\end{matrix}\right),\quad b_{4}=\left(\begin{matrix}0&0&-1\\ -1&0&0\\ 0&1&0\end{matrix}\right),$$
$$c_{1}=\left(\begin{matrix}0&1&0\\ 0&0&1\\ 1&0&0\end{matrix}\right),\quad c_{2}=\left(\begin{matrix}0&1&0\\ 0&0&-1\\ -1&0&0\end{matrix}\right),$$
$$c_{3}=\left(\begin{matrix}0&-1&0\\ 0&0&1\\ -1&0&0\end{matrix}\right),\quad c_{4}=\left(\begin{matrix}0&-1&0\\ 0&0&-1\\ 1&0&0\end{matrix}\right).$$
(B.1)

\(A_{4}\) group is the symmetry group of regular tetrahedron which generators generally are called \(S,T\). \(T\) represents 3-order element generated by rotating around axes passing through vertices which include 4 axes, which can be classified as: element by rotating \(\frac{2}{3}\pi\) clockwise and element by rotating \(\frac{2}{3}\pi\) anticlockwise. \(S\) represents 2-order element generated by rotating around axes connecting the midpoints in two opposite edges which include 3 axes.

All 12 elements can be classified by axes as follows

$$S\ \text{axis: }\{a_{2},a_{3},a_{4}\},$$
$$T\ \text{axis: }\{b_{1},b_{2},b_{3},b_{4},c_{1},c_{2},c_{3},c_{4}\}.$$
(B.2)

The generators could be chosen \(S=a_{2},T=b_{1}\) which satisfy \(S^{2}=T^{3}=1\).

More can refer to literature [25].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Chen, XJ. CP Violating Phase Originated from Right-handed Neutrino Mixing. Phys. Atom. Nuclei 83, 755–763 (2020). https://doi.org/10.1134/S106377882005021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882005021X

Navigation