Skip to main content
Log in

Existence and Uniqueness of Martingale Solutions to Option Pricing Equations with Noise

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We introduce a new option pricing equation with noise in a frictional financial market, which is fully different from the classical option pricing equation, and arrive at the existence of martingale solutions of this option pricing equation regardless of incompressibility. Furthermore, we also discuss the uniqueness of martingale solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Elsevier, Amsterdam, 2003.

    MATH  Google Scholar 

  2. L. Ambrosio, G. Da Prato, and A. Mennucci, Introduction to Measure Theory and Integration, Edizioni della Normale, Pisa, 2012.

  3. F. Bellini and M. Frittelli, On the existence of minimax martingale measures, Math. Finance, 12(1):1–21, 2002.

    Article  MathSciNet  Google Scholar 

  4. F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81(3):637–654, 1973.

    Article  MathSciNet  Google Scholar 

  5. Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains, J. Differ. Equations, 254(4):1627–1685, 2013.

    MathSciNet  MATH  Google Scholar 

  6. M. Capinski and S. Peszat, On the existence of a solution to stochastic Navier–Stokes equations, Theory Methods Appl., 44(2):141–177, 2001.

    MathSciNet  MATH  Google Scholar 

  7. A. Cherny, Pricing and hedging European options with discrete-time coherent risk, Finance Stoch., 11(4):537–569, 2007.

    MathSciNet  MATH  Google Scholar 

  8. A. Cherny, Pricing with coherent risk, Theory Probab. Appl., 52(3):389–415, 2008.

    MathSciNet  MATH  Google Scholar 

  9. C. Cong and P. Zhao, Non-cash risk measure on nonconvex sets, Mathematics, 6(10):186, 2018.

    Google Scholar 

  10. C. Corduneanu, Principles of Differential and Integral Equations, AMS, Providence, RI, 2008.

    MATH  Google Scholar 

  11. M. Frittelli, The minimal entropy martingale measure and the valuation problem in incomplete markets, Math. Finance, 10(1):39–52, 2000.

    MathSciNet  MATH  Google Scholar 

  12. T. Goll and L. Rüschendorf, Minimax and minimal distance martingale measures and their relationship to portfolio optimization, Finance Stoch., 5(4):557–581, 2001.

    MathSciNet  MATH  Google Scholar 

  13. P. Hepperger, Option pricing in Hilbert space-valued jump-diffusion models using partial integro-differential equations, SIAM J. Financ. Math., 1(1):454–489, 2010.

    MathSciNet  MATH  Google Scholar 

  14. J. Hugonnier, D. Kramkov, and W. Schachermayer, On utility-based pricing of contingent claims in incomplete markets, Math. Finance, 15(2):203–212, 2005.

    MathSciNet  MATH  Google Scholar 

  15. H. Liu and H. Gao, Stochastic 3D Navier–Stokes equations with nonlinear damping: Martingale solution, strong solution and small time large deviation principles, 2016, arXiv:1608.07996.

  16. W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015.

    MATH  Google Scholar 

  17. R. Mikulevicius and B.L. Rozovskii, Global l2-solutions of stochastic Navier–Stokes equations, Ann. Probab., 33(1): 137–176, 2005.

    MathSciNet  MATH  Google Scholar 

  18. M. Muslim, Existence and approximation of solutions to fractional differential equations, Math. Comput. Modelling, 49(5–6):1164–1172, 2009.

    MathSciNet  MATH  Google Scholar 

  19. B.G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, San Diego, CA, 1997.

    MATH  Google Scholar 

  20. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 2014.

    MATH  Google Scholar 

  21. C. Reisinger and G. Wittum, On multigrid for anisotropic equations and variational inequalities “pricing multidimensional European and American options”, Comput. Vis. Sci., 7(3–4):189–197, 2004.

    MathSciNet  MATH  Google Scholar 

  22. R. Rouge and N. El Karoui, Pricing via utility maximisation and entropy, Math. Finance, 10(2):259–276, 2000.

    MathSciNet  MATH  Google Scholar 

  23. M. Xu, Risk measure pricing and hedging in incomplete markets, Ann. Finance, 2(1):51–71, 2006.

    MATH  Google Scholar 

  24. H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328(2):1075–1081, 2007.

    MathSciNet  MATH  Google Scholar 

  25. J. Zhao, E. Lépinette, and P. Zhao, Pricing under dynamic risk measures, Open Math., 17(1):894–905, 2019.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peibiao Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation (NNSF) of China (Nos. 11871275, 11371194) and Postgraduate Research & Practice Innovation Program of Jiangsu Province

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, R. & Zhao, P. Existence and Uniqueness of Martingale Solutions to Option Pricing Equations with Noise. Lith Math J 60, 562–576 (2020). https://doi.org/10.1007/s10986-020-09499-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-020-09499-1

Keywords

MSC

Navigation