Skip to main content
Log in

Effect of reducibility on the performance of Co-based catalysts for the production of high-calorie synthetic natural gas

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Co-based catalysts were developed for the production of high-calorie synthetic natural gas. The Co reduction in Al2O3- and SiO2-supported catalysts prepared with different Co loading, and their catalytic properties for high-calorie methanation were investigated. The CO conversion of the Co/SiO2 catalysts was superior to that of the Co/ Al2O3 with the same Co loading, due to their better reducibility at 400°C. The activities of both the Al2O3 and SiO2-supported catalysts increased with Co loading, while the growth of hydrocarbon chains decreased as the Co loading increased. As the reduction temperature increased, crystallite size of Co increased in 10Co/SiO2, resulting in decrease of CO conversion and increase of C2+ selectivity. The highest CO conversion (98.7%) was obtained over 10Co/SiO2 reduced at 400 °C. Moreover, the heating value of the product gas (10,405 kcal/Nm3) exceeded the standard heating value without requiring a high reduction temperature (700 °C) or a noble metal (Ru).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Davis, K. Caldeira and H. D. Matthews, Science, 329, 1330 (2010).

    Article  CAS  Google Scholar 

  2. S. B. Jo, H. J. Chae, T. Y. Kim, C. H. Lee, J. U. Oh, S.-H. Kang, J. W. Kim, M. Jeong, S. C. Lee and J. C. Kim, Catal. Commun., 117, 74 (2018).

    Article  CAS  Google Scholar 

  3. Y. H. Lee, H. Kim, H. S. Choi, D.-W. Lee and K.-Y. Lee, Korean J. Chem. Eng., 32, 2220 (2015).

    Article  CAS  Google Scholar 

  4. Y. H. Lee, D.-W. Lee and K.-Y. Lee, J. Mol. Catal. A-Chem., 425, 190 (2016).

    Article  CAS  Google Scholar 

  5. I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz and A. Wokaun, Appl. Catal. A-Gen., 329, 68 (2007).

    Article  CAS  Google Scholar 

  6. C. Guo, Y. Wu, H. Qin and J. Zhang, Fuel Process. Technol., 124, 61 (2014).

    Article  CAS  Google Scholar 

  7. D. Hu, J. Gao, Y. Ping, L. Jia, P. Gunawan, Z. Zhong, G. Xu, F. Gu and F. Su, Ind. Eng. Chem. Res., 51, 4875 (2012).

    Article  CAS  Google Scholar 

  8. K. B. Kester, E. Zagli and J. L. Falconer, Appl. Catal., 22, 311 (1986).

    Article  CAS  Google Scholar 

  9. J. Sehested, S. Dahl, J. Jacobsen and J. R. Rostrup-Nielsen, J. Phys. Chem. B, 109, 2432 (2005).

    Article  CAS  Google Scholar 

  10. J. Kopyscinski, T. J. Schildhauer and S. M. Biollaz, Fuel, 89, 1763 (2010).

    Article  CAS  Google Scholar 

  11. S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran and S. Bajohr, Fuel, 166, 276 (2016).

    Article  Google Scholar 

  12. B. H. Davis, Ind. Eng. Chem. Res., 46, 8938 (2007).

    Article  CAS  Google Scholar 

  13. J. Den Breejen, P. Radstake, G. Bezemer, J. Bitter, V. Frøseth, A. Holmen and K. P. de Jong, J. Am. Chem. Soc., 131, 7197 (2009).

    Article  CAS  Google Scholar 

  14. Z.-j. Wang, Z. Yan, C.-j. Liu and D. Goodman, ChemCatChem., 3, 551 (2011).

    Article  CAS  Google Scholar 

  15. C. Weststrate, J. Van De Loosdrecht and J. Niemantsverdriet, J. Catal., 342, 1 (2016).

    Article  CAS  Google Scholar 

  16. T. Inui, A. Sakamoto, T. Takeguchi and Y. Ishigaki, Ind. Eng. Chem. Res., 28, 427 (1989).

    Article  CAS  Google Scholar 

  17. Y. Ishigaki, M. Uba, S. Nishida and T. Inui, Appl. Catal., 47, 197 (1989).

    Article  CAS  Google Scholar 

  18. J.-H. Oh, J. W. Bae, S.-J. Park, P. Khanna and K.-W. Jun, Catal. Lett., 130, 403 (2009).

    Article  CAS  Google Scholar 

  19. K. S. Park, K. Saravanan, S.-J. Park, Y.-J. Lee, K.-W. Jeon and J. W. Bae, Catal. Sci. Technol., 7, 4079 (2017).

    Article  CAS  Google Scholar 

  20. R. C. Reuel and C. H. Bartholomew, J. Catal., 85, 78 (1984).

    Article  CAS  Google Scholar 

  21. H. G. Salazar-Contreras, A. Martínez-Hernández, A. A. Boix, G. A. Fuentes and E. Torres-García, Appl. Catal. B-Environ., 244, 414 (2019).

    Article  CAS  Google Scholar 

  22. J. Zhang, J. Chen, J. Ren and Y. Sun, Appl. Catal. A-Gen., 243, 121 (2003).

    Article  CAS  Google Scholar 

  23. Y. Zhang, S. Nagamori, S. Hinchiranan, T. Vitidsant and N. Tsubaki, Energy Fuel, 20, 417 (2006).

    Article  CAS  Google Scholar 

  24. G. T. Armstrong and T. L. Jobe Jr., Heating values of natural gas and its components, U.S. Department of Commerce, Washington, D.C. (1982).

    Google Scholar 

  25. H. M. Torres Galvis and K. P. de Jong, ACS Catal., 3, 2130 (2013).

    Article  CAS  Google Scholar 

  26. W. Li, X. Nie, X. Jiang, A. Zhang, F. Ding, M. Liu, Z. Liu, X. Guo and C. Song, Appl. Catal. B-Environ., 220, 397 (2018).

    Article  CAS  Google Scholar 

  27. S. Ullah, E. C. Lovell, R. J. Wong, T. H. Tan, J. Scott and R. Amal, ACS Sustain. Chem. Eng., 8, 5056 (2020).

    Article  CAS  Google Scholar 

  28. W.-P. Ma, Y.-J. Ding and L.-W. Lin, Ind. Eng. Chem. Res., 43, 2391 (2004).

    Article  CAS  Google Scholar 

  29. A. Y. Khodakov, R. Bechara and A. Griboval-Constant, Appl. Catal. A-Gen., 254, 273 (2003).

    Article  CAS  Google Scholar 

  30. A. Martínez, C. López, F. Márquez and I. Díaz, J. Catal., 220, 486 (2003).

    Article  Google Scholar 

  31. C. Medina, R. García, P. Reyes, J. Fierro and N. Escalona, Appl. Catal. A-Gen., 373, 71 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (20183010032400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Chool Lee or Jae Chang Kim.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_588_MOESM1_ESM.pdf

Effect of reducibility on the performance of Co-based catalysts for the production of high-calorie synthetic natural gas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.Y., Jo, S.B., Lee, C.H. et al. Effect of reducibility on the performance of Co-based catalysts for the production of high-calorie synthetic natural gas. Korean J. Chem. Eng. 37, 1690–1698 (2020). https://doi.org/10.1007/s11814-020-0588-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0588-0

Keywords

Navigation