Skip to main content

Advertisement

Log in

Elucidating the effects of particle sizes on the fire extinguishing performance of core-shell dry water

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Core-shell dry water (DW) has attracted significant attention as a promising candidate for future fire extinguishing agents, owing to its high water content, powdery structure and ease of handling. However, the lack of detailed information regarding the characteristics of DW has considerably hindered efforts to improve its fire extinguishing performance. This study is the first attempt to elucidate the origin of the effects of particle size of DW on fire extinguishment. Pristine DW was fractionated into three different particle sizes via careful sieving. Through systematic analyses, it could be determined that smaller DW could be vaporized at lower temperatures, thereby facilitating good cooling and smoldering of flames. However, small DW cannot sufficiently penetrate flames, which makes it difficult to reach the burning surface. However, medium-sized DW exhibited a balance in its cooling, smoldering, and penetration effects. Thus, it achieved better performance in fire extinguishment when compared to small- and large-sized DWs. It was also demonstrated that the fire extinguishing capability of medium-sized DW can be significantly enhanced by adding NaHCO3 in the water core of the DW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, A. Fan, B. Yuan, Y. Sun, Y. Zhang and Y. Niu, J. Loss Prev. Process Ind., 59, 14 (2019).

    Article  CAS  Google Scholar 

  2. Y. Kim and K. Kwon, Korean J. Chem. Eng., 29, 908 (2012).

    Article  CAS  Google Scholar 

  3. S. R. Skaggs, Examining the risks of carbon dioxide as a fire suppressant, Halon Options Tech. Work. Conf., 261–268 (1998).

  4. Y. Koshiba, Y. Yamamoto and H. Ohtani, J. Loss Prev. Process Ind., 62, 103973 (2019).

    Article  CAS  Google Scholar 

  5. Z. Han, Y. Zhang, Z. Du, F. Xu, S. Li and J. Zhang, J. Clean. Prod., 166, 590 (2017).

    Article  CAS  Google Scholar 

  6. B. Andersson and P. Blomqvist, Fire Saf. J., 46, 104 (2011).

    Article  CAS  Google Scholar 

  7. K. Kwon and Y. Kim, Korean J. Chem. Eng., 30, 2254 (2013).

    Article  CAS  Google Scholar 

  8. A. Hagenaars, I. J. Meyer, D. Herzke, B. G. Pardo, P. Martinez, M. Pabon, W. De Coen and D. Knapen, Aquat. Toxicol., 104, 168 (2011).

    Article  CAS  Google Scholar 

  9. L. Forny, I. Pezron, K. Saleh, P. Guigon and L. Komunjer, Powder Technol., 171, 15 (2007).

    Article  CAS  Google Scholar 

  10. K. Saleh, L. Forny, P. Guigon and I. Pezron, Chem. Eng. Res. Des., 89, 537 (2011).

    Article  CAS  Google Scholar 

  11. M. Hu, M. Tian, J. He and Y. He, Colloids Surf. A Physicochem. Eng. Asp., 414, 216 (2012).

    Article  CAS  Google Scholar 

  12. E. Bormashenko and A. Musin, Appl. Surf. Sci., 255, 6429 (2009).

    Article  CAS  Google Scholar 

  13. D. Altan and J. Zhu, Formation and stability of dry water for storage and transportation of aqueous solutions, Research Report. Oklahoma City: Casady School, 1–22 (2014).

    Google Scholar 

  14. J. Park, K. Shin, J. Kim, H. Lee, Y. Seo, N. Maeda, W. Tan and C. D. Wood, J. Phys. Chem. C, 119, 1690 (2015).

    Article  CAS  Google Scholar 

  15. O. Taylan and H. Berberoglu, J. Quant. Spectrosc. Radiat. Transf., 120, 104 (2013).

    Article  CAS  Google Scholar 

  16. X. Ni, S. Zhang, Z. Zheng and X. Wang, J. Hazard. Mater., 341, 20 (2018).

    Article  Google Scholar 

  17. E. Lee and Y. Choi, J. Korean Soc. Saf., 34, 28 (2019).

    Google Scholar 

  18. R. Dawson, L. A. Stevens, O. S. A. Williams, W. Wang, B. O. Carter, S. Sutton, T. C. Drage, F. Blanc, D. J. Adams and A. I. Cooper, Energy Environ. Sci., 7, 1786 (2014).

    Article  CAS  Google Scholar 

  19. F. Farhang, T. D. Nguyen, and A. V. Nguyen, Adv. Powder Technol., 25, 1195 (2014).

    Article  CAS  Google Scholar 

  20. L. Forny, K. Saleh, I. Pezron, L. Komunjer and P. Guigon, Powder Technol., 189, 263 (2009).

    Article  CAS  Google Scholar 

  21. Y. Li, D. Zhang, D. Bai, S. Li, X. Wang and W. Zhou, Langmuir, 32, 7365 (2016).

    Article  CAS  Google Scholar 

  22. A. Chattawayt, G. G. Cox, S. R. Preece and D. J. Spring, The development of a small scale class a fire test, Halon Options Tech. Work. Conf., 498–508 (1997).

  23. G. Grant, J. Brenton and D. Drysdale, Prog. Energy Combust. Sci., 26, 79 (2000).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07050920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngbo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Son, H. & Choi, Y. Elucidating the effects of particle sizes on the fire extinguishing performance of core-shell dry water. Korean J. Chem. Eng. 37, 1642–1648 (2020). https://doi.org/10.1007/s11814-020-0632-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0632-0

Keywords

Navigation