Skip to main content
Log in

Effects of electromagnetic field and asymmetric Gaussian potential on low energy state energy of bound polaron in quantum well

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this article, effects of electromagnetic field and asymmetric Gaussian potential (AGP) on the bound polaron’s low energy state in quantum well are explored theoretically by the Lee-Low-Pines unitary transformation and Pekar type variational method. The variation of the ground state energy and the first excited state energy of the polaron with the Coulomb bound potential (CBP) strength at different electron-phonon coupling (EPC) constants, electric field (EF) strengths, heights and ranges of the AGP and magnetic field adjustment lengths are obtained. Our numerical results indicate that the polaron’s low energy state depends on the EPC constant, the EF strength, the AGP’s height and range and the CBP strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dawson et al., J. Appl. Phys. 119, 181505 (2016).

    Article  ADS  Google Scholar 

  2. L. Schade et al., Appl. Phys. Lett. 99, 051103 (2011).

    Article  ADS  Google Scholar 

  3. M. Stern, V. Garmider, V. Umansky and I. Bar-Joseph, Phys. Rev. Lett. 100, 178 (2008).

    Google Scholar 

  4. J. L. Xiao, Int. J. Theor. Phys. 55, 147 (2016).

    Article  Google Scholar 

  5. C. L. Cao, L. Besombes and J. Fernández-Rossier, Phys. Rev. B 84, 3825 (2011).

    Google Scholar 

  6. X. M. Dou et al., Phys. Rev. B 84, 033302 (2011).

    Article  ADS  Google Scholar 

  7. K. Kamide, S. Iwamoto and Y. Arakawa, Phys. Rev. Lett. 113, 143604 (2014).

    Article  ADS  Google Scholar 

  8. E. Tsitsishvili and H. Kalt, Phys. Rev. B 82, 195315 (2010).

    Article  ADS  Google Scholar 

  9. X. Liu et al., Opt. Mater. 53, 218 (2016).

    Article  ADS  Google Scholar 

  10. Z. H. Zhang, L. Zou, K. X. Guo and J. H. Yuan, Physica E 77, 90 (2016).

    Article  ADS  Google Scholar 

  11. A. Guo and J. Du, Superlattices Microstruct. 64, 158 (2013).

    Article  ADS  Google Scholar 

  12. J. Wu, K. Guo and G. Liu, Physica B 446, 59 (2014).

    Article  ADS  Google Scholar 

  13. R. Khordad, S. Goudarzi and H. Bahramiyan, Indian J. Phys. 90, 659 (2016).

    Article  ADS  Google Scholar 

  14. X. J. Miao, Y. Sun and J. L. Xiao, J. Korean Phys. Soc. 67, 1197 (2015).

    Article  ADS  Google Scholar 

  15. Sarengaowa, J. L. Xiao and C. L. Zhao, Chin. J. Phys. 55, 1883 (2017).

    Article  Google Scholar 

  16. X. J. Ma and J. L. Xiao, Chin. J. Phys. 56, 561 (2018).

    Article  Google Scholar 

  17. Y. Chen, H. Song and J. Xiao, Superlattices Microstruct. 113, 82 (2018).

    Article  ADS  Google Scholar 

  18. Y. J. Chen, W. F. Liu and F. L. Shao, Physica E 110, 15 (2019).

    Article  ADS  Google Scholar 

  19. Y. J. Chen, H. T. Song and J. L. Xiao, Indian J. Phys. 92, 587 (2018).

    Article  ADS  Google Scholar 

  20. Y. J. Chen, C. F. Cui and H. T. Song, Physica E 111, 130 (2019).

    Article  ADS  Google Scholar 

  21. Y. J. Chen, H. T. Song and J. L. Xiao, Superlattices Microstruct. 118, 92 (2018).

    Article  ADS  Google Scholar 

  22. Y. J. Chen and X. Wang, Int. J. Theor. Phys. 57, 3540 (2018).

    Article  Google Scholar 

  23. Y. J. Chen and J. L. Xiao, J. Low Temp. Phys. 186, 241 (2017).

    Article  ADS  Google Scholar 

  24. Y. J. Chen and P. Y. Zhang, J. Low Temp. Phys. 194, 262 (2019).

    Article  ADS  Google Scholar 

  25. J. L. Xiao, Superlattices Microstruct. 135, 106279 (2019).

    Article  Google Scholar 

  26. T. D. Lee, F. E. Low and D. Pines, Phys. Rev. 90, 297 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954).

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11975011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Chen, YJ. & Shao, FL. Effects of electromagnetic field and asymmetric Gaussian potential on low energy state energy of bound polaron in quantum well. J. Korean Phys. Soc. 77, 582–586 (2020). https://doi.org/10.3938/jkps.77.582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.582

Keywords

Navigation