Skip to main content
Log in

Effect of the Temperature and of the Drawing Conditions on the Fracture Behaviour of Thermoplastic Starch Films for Packaging Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work the effects of testing temperature and drawing orientation on the fracture behaviour of biobased and biodegradable thermoplastic starch based films, currently applied in the food packaging field, were investigated. At this aim, the Essential Work of Fracture (EWF) approach was applied on samples tested at 0 °C, 25 °C and 50 °C both in machine (MD) and in cross (CD) directions. The specific essential work of fracture (we) values strongly decreased with the testing temperature, and we values of CD samples were systematically higher than those of the corresponding MD samples. Considering that photograms of the CD samples taken during the EWF tests highlighted that the yielding zone became progressively opaque as an effect of the strain induced crystallization, it was hypothesized that in CD specimens part of the tensile energy applied during the straining process was utilized for the orientation of the macromolecules along the strain direction, rather than for the propagation of the crack in the ligament zone. Tensile tests under quasi-static conditions on dumbbell specimens highlighted that, regardless to the drawing direction, the stiffness and the resistance at yield and at break decreased with the temperature, while the strain at break was considerably enhanced. Moreover, because of the strong anisotropy induced by the molecular orientation in the drawing direction, MD tested samples had higher elastic modulus, yield resistance, and stress at break compared to CD samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DENT:

Double edge notched tension

E:

Tensile modulus

β:

Plastic shape factor

σy :

Yield stress

L:

Ligament length

\({\overline{\text{L}}}\) :

Arithmetic mean of the ligament length

W:

Width of the DENT specimens

t:

Thickness of the DENT specimens

n:

Number of specimens

R2 :

Coefficient of determination

S:

Standard error of the linear regression

\({\overline{\text{S}}}\) :

Standard deviation of Wf values

S11, S12, S22 :

Parameters of the linear regression

Wf :

Total work of fracture

wf :

Specific total work of fracture

\(\overline{{\text{W}}}_{{\text{f}}}\) :

Arithmetic mean of Wf values

\({\text{W}}_{{\text{e}}}\) :

Essential work of fracture

\({\text{w}}_{{\text{e}}}\) :

Specific essential work of fracture

\({\text{W}}_{{\text{p}}}\) :

Non-essential work of fracture

\({\text{w}}_{{\text{p}}}\) :

Specific non-essential work of fracture

\({\text{w}}_{{{\text{prop}}}}\) :

Specific essential work for crack propagation

\({\text{w}}_{{{\text{ini}}}}\) :

Specific essential work for crack initiation

References

  1. Hottle TA, Bilec MM, Landis AE (2013) Polym Degrad Stab 98:1898

    CAS  Google Scholar 

  2. Thakur S, Chaudhary J, Sharma B, Verma A, Tamulevicius S, Thakur VK (2018) Curr Opin Green Sustain Chem 13:68

    Google Scholar 

  3. Albuquerque PBS, Malafaia CB (2018) Int J Biol Macromol 107:615

    CAS  PubMed  Google Scholar 

  4. Ryberg M, Laurent A, Hauschild MZ (2018) Mapping of global plastic value chain and plastic losses to the environment: with a particular focus on marine environment. United Nations Environment Programme, Nairobi

    Google Scholar 

  5. Drzyzga O, Prieto A (2019) Microb Biotechnol 12:66

    PubMed  Google Scholar 

  6. Agarski B, Vukelic D, Micunovic MI, Budak I (2019) J Environ Manage 245:55

    CAS  PubMed  Google Scholar 

  7. Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Waste Manag Resour Util 35:701

    CAS  Google Scholar 

  8. Wright SL, Kelly FJ (2017) Environ Sci Technol 51:6634

    CAS  PubMed  Google Scholar 

  9. Benobeidallah B, Benhamida A, Dorigato A, Sola A, Messori M, Pegoretti A (2019) J Renew Mater 7:89

    Google Scholar 

  10. Oulmou F, Benhamida A, Dorigato A, Sola A, Messori M, Pegoretti A (2019) J Elastomers Plast 51:175

    CAS  Google Scholar 

  11. Tait M, Pegoretti A, Dorigato A, Kalaitzidou K (2011) Carbon 49:4280

    CAS  Google Scholar 

  12. Dorigato A, Sebastiani M, Pegoretti A, Fambri L (2012) J Polym Environ 20:713

    CAS  Google Scholar 

  13. Goncalves I, Vasconcelos A, Machado ASL, Alves AV (2017) Bioplastics from agro-wastes for food packaging application. In: Grumezescu AM (ed) Food packaging, 1st edn. Academic Press, Cambridge, pp 223-263

    Google Scholar 

  14. Reddy MM, Misra M, Mohanty AK (2012) Chem Eng Prog 108:37

    CAS  Google Scholar 

  15. Ludevese-Pascual G, Laranja JL, Amar E, Bossier P, De Schryver P (2019) Aquac Res 50:1269

    CAS  Google Scholar 

  16. Xie FW, Zhang TL, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Prog Polym Sci 90:211

    CAS  Google Scholar 

  17. Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Angew Chem Int Ed 58:50

    CAS  Google Scholar 

  18. Dorigato A, Pegoretti A (2012) Colloid Polym Sci 290:359

    CAS  Google Scholar 

  19. Byun Y, Kim YT (2014) Bioplastics for food packaging. In: Han JH (ed) Innovations in food packaging. Academic Press, San Diego, p 353

    Google Scholar 

  20. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Trends Food Sci Technol 32:128

    CAS  Google Scholar 

  21. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841

    CAS  Google Scholar 

  22. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polym Degrad Stab 91:620

    CAS  Google Scholar 

  23. Valentini F, Dorigato A, Rigotti D, Pegoretti A (2019) J Polym Environ 27:1333

    CAS  Google Scholar 

  24. Dorigato A, Negri M, Pegoretti A (2018) J Renew Mater 6:493

    CAS  Google Scholar 

  25. Dorigato A, Fredi G, Pegoretti A (2019) Thermo-mechanical behavior of novel wood laminae-thermoplastic starch biodegradable composites with thermal energy storage/release capability. Front Mater 6:76

    Google Scholar 

  26. Halley PJ, Avérous L (2014) Chapter 5—Starch modification to develop novel starch-biopolymer blends: state of art and perspectives. In: Halley PJ, Avérous L (eds) Starch polymers from genetic engineering to green applications. Elsevier, Amsterdam, p 105

    Google Scholar 

  27. Averous L, Fauconnier N, Moro L, Fringant C (2000) J Appl Polym Sci 76:1117

    CAS  Google Scholar 

  28. Maharana T, Singh BC (2006) J Appl Polym Sci 100:3229

    CAS  Google Scholar 

  29. Nayak PL (1999) J Macromol Sci Rev Macromol Chem Phys C39:481

    Google Scholar 

  30. Doi Y, Fukuda K (1994) Biodegradable plastics and polymers, vol 12. Elsevier, Amsterdam

    Google Scholar 

  31. Lawton JW (1996) Carbohyd Polym 29:203

    CAS  Google Scholar 

  32. Yew GH, Chow WS, Ishak ZAM, Yusof AMM (2009) J Elastomers Plast 41:369

    CAS  Google Scholar 

  33. Ayucitra A (2012) Int J Chem Eng Appl 3:156

    CAS  Google Scholar 

  34. Chi H, Xu K, Wu X, Chen Q, Xue D, Song C, Zhang W, Wang P (2008) Food Chem 106:923

    CAS  Google Scholar 

  35. Kaseem M, Hamad K, Deri F (2012) Polym Sci Ser A 54:165

    CAS  Google Scholar 

  36. Bastioli C (1998) Polym Degrad Stab 59:263

    CAS  Google Scholar 

  37. Colonna P, Mercier C (1985) Phytochemistry 24:1667

    CAS  Google Scholar 

  38. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM (2019) Int J Food Prop 22:925

    CAS  Google Scholar 

  39. Ali R, Iannace S, Nicolais L (2003) J Appl Polym Sci 88:1637

    CAS  Google Scholar 

  40. Laftah WA, Rahman WAWA (2019) Polytechnica 2:51

    Google Scholar 

  41. Thunwall M, Kuthanová V, Boldizar A, Rigdahl M (2008) Carbohyd Polym 71:583

    CAS  Google Scholar 

  42. Zhang Y, Rempel C, Liu Q (2014) Crit Rev Food Sci Nutr 54:1353

    CAS  PubMed  Google Scholar 

  43. Williams JG, Rink M (2007) Eng Fract Mech 74:1009

    Google Scholar 

  44. Prashantha SH, Lacrampe MF, Krawczak P (2011) Compos Sci Technol 71:1859

    CAS  Google Scholar 

  45. Bárány T, Czigány T, Karger-Kocsis J (2010) Prog Polym Sci 35:1257

    Google Scholar 

  46. Clutton EQ (2000) ESIS TC4 experience with the essential work of fracture method. In: Williams JG, Pavan A (eds) Fracture of polymers, composites and adhesives, second ESIS TC4 conference on fracture of polymers, composites and adhesives. Elsevier, New York, p 187

    Google Scholar 

  47. Dorigato A, Pegoretti A (2012) Eng Fract Mech 79:213

    Google Scholar 

  48. Musto P, Ragosta G, Scarinzi G, Mascia L (2004) Polymer 45:4265

    CAS  Google Scholar 

  49. Zhang H, Zhang Z, Yang JL, Friedrich K (2006) Polymer 47:679

    CAS  Google Scholar 

  50. Mai YW, Wong SC, Chen X (2000) Polymer blends: formulations and performance. Wiley, New York, p 172

    Google Scholar 

  51. Rodolfo A (2018) J Vinyl Additive Technol 25:3

    Google Scholar 

  52. Benavente R, Perez E, Quijada R (2001) J. Polym Sci Pol Phys 39:277

    CAS  Google Scholar 

  53. Zhang Y, Rempel C, McLaren D (2014) Chapter 16—Thermoplastic starch. In: Han JH (ed) Innovations in food packaging, 2nd edn. Academic Press, San Diego, p 391

    Google Scholar 

  54. Dunn T (2015) Oriented plastic films. In: Dunn T (ed) Flexible packaging. William Andrew Publishing, Oxford, p 177

    Google Scholar 

  55. Fambri L, Lutterotti L (2019) Effect of Processing and orientation on structural and mechanical properties of polypropylene products. In: Wang W (ed) Polypropylene. IntechOpen, Hamilton

    Google Scholar 

  56. Hashemi S (2000) Polym Eng Sci 40:798

    CAS  Google Scholar 

  57. Selling GW, Sessa DJ (2007) Ind Crops Prod 25:266

    CAS  Google Scholar 

  58. Kumaraswamy G, Kornfield JA, Yeh FJ, Hsiao BS (2002) Macromolecules 35:1762

    CAS  Google Scholar 

  59. Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Science 316:1014

    CAS  PubMed  Google Scholar 

  60. Nagasawa T, Shimomura Y (1974) J Polym Sci Polym Phys Edit 12:2291

    CAS  Google Scholar 

  61. Somani RH, Yang L, Zhu L, Hsiao BS (2005) Polymer 46:8587

    CAS  Google Scholar 

  62. Larrañaga A, Lizundia E (2018) Strain-induced crystallization. In: Thomas S et al (eds) Crystallization in multiphase polymer systems. Elsevier, Amsterdam, p 471

    Google Scholar 

  63. Chaléat CM, Halley PJ, Truss RW (2008) Carbohyd Polym 71:535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Dorigato or Alessandro Pegoretti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorigato, A., Perin, D. & Pegoretti, A. Effect of the Temperature and of the Drawing Conditions on the Fracture Behaviour of Thermoplastic Starch Films for Packaging Applications. J Polym Environ 28, 3244–3255 (2020). https://doi.org/10.1007/s10924-020-01843-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01843-3

Keywords

Navigation