Skip to main content
Log in

Effect of Hybridization on the Functional Properties of AgMF–MWCNT-Filled Electrically Conductive Adhesive

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A combination of metal and non-metal filler in an epoxy resin, called a hybrid electrically conductive adhesive (ECA), is an important development in the field of highly conductive electronic interconnect materials. Carbon nanotubes (CNTs) are well known for contributing strength and stiffness to ECA and silver (Ag) has been widely used as a conductive metal. This study presents the characterization of a hybrid silver micro-flake (AgMF) with multiwalled carbon nanotubes (MWCNT) in an epoxy matrix ECA, in terms of electrical and mechanical properties. The weight percentage of AgMF used was varied, from 1 wt.% to 10 wt.%, whereas the weight percentage of MWCNT filler loading was maintained at 5 wt.%. The properties of the hybrid ECA were characterized using a four-point probe and a universal testing machine for lap shear tests. It was found that the filler hybridization lowered the performance of the ECA in terms of both electrical and mechanical properties, as compared with non-hybrid MWCNT-filled ECA. This may be attributed to the weak interaction between micro- and nano-filler particle sizes and agglomeration of the MWCNT in the epoxy matrix in the hybrid ECA system. The hybrid ECA electrical conductivity was successfully enhanced when a low ratio of AgMF and MWCNT was considered. In addition, failure analysis confirmed that the hybrid ECA with less AgMF filler loading exhibits improved adhesion strength, suggesting a superior epoxy-to-substrate bonding interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhou, Y. Mao, C. Wang, S. Wang, Y. Chen, and W. He, J. Mater. Sci. Mater. Electron. 27, 9186 (2016).

    Article  CAS  Google Scholar 

  2. J. Luo, C. Li, M. Chen, and Q. Li, Compos. Sci. Technol. 129, 191 (2016).

    Article  CAS  Google Scholar 

  3. H.W. Cui and W.H. Du, J. Adhes. 89, 714 (2013).

    Article  CAS  Google Scholar 

  4. F. Marcq, P. Demont, P. Monfraix, A. Peigney, Ch Laurent, T. Falat, F. Courtade, and T. Jamin, Microelectron. Reliab. 51, 1230 (2011).

    Article  CAS  Google Scholar 

  5. Y.H. Ji, Y. Liu, G.W. Huang, X.J. Shen, H.M. Xiao, and S.Y. Fu, ACS Appl. Mater. Interfaces 7, 8041 (2015).

    Article  CAS  Google Scholar 

  6. B.M. Amoli, A. Hu, N.Y. Zhou, and B. Zhao, J. Mater. Sci. Mater. Electron. 26, 730 (2015).

    Google Scholar 

  7. A. Martone, C. Formicola, F. Piscitelli, M. Lavorgna, M. Zarrelli, V. Antonucci, and M. Giordano, Express Polym. Lett. 6, 520 (2012).

    Article  CAS  Google Scholar 

  8. T.P. Dyachkova, A.V. Rukhov, A.G. Tkachev, and E.N. Tugolukov, Adv. Mater. Technol. 2, 18 (2018).

    Google Scholar 

  9. Q. Fan, H. Cui, D. Li, Z. Hu, Z. Yuan, L. Ye, and J. Liu, in ICEPT-HDP Conference Proceedings (2011), pp. 423–425.

  10. J. Zhu, H. Jin, M. Zhou, and X. Zhang, in ICEPT Conference Proceedings (2016), pp. 923–926.

  11. J. Chen, J. Han, and D. Xu, Mater. Lett. 246, 20 (2019).

    Article  CAS  Google Scholar 

  12. H. Dong, X. Li, Y. Dong, S. Guo, and L. Zhao, Materials 12, 1 (2019).

    Google Scholar 

  13. S. Li, X. He, J. Hao, J. Zhou, and F. Xue, in ICEPT Conference Proceedings (2017), pp. 275–279.

  14. M. Liang and K.L. Wong, in ICEP Conference Proceedings (2016), pp. 162–167.

  15. M. Rahmandoust and M.R. Ayatollahi, Advanced Structured Materials, Vol. 39 (Switzerland: Springer, 2016), p. 117.

    Google Scholar 

  16. F.V. Ferreira, B.R.C. Menezes, W. Franceschi, E.V. Ferreira, K. Lozano, L.S. Cividanes, A.R. Coutinho, and G.P. Thim, Fuller. Nanotub. Car. Nanostruct. 25, 531 (2017).

    Article  CAS  Google Scholar 

  17. K. Mantena, J. Li, and J.K. Lumpp, in IEEE Aerospace Conference Proceedings (2008), pp. 1–5.

  18. H. Xu, J. Al-Ghalith, and T. Dumitrică, Carbon 134, 531 (2018).

    Article  CAS  Google Scholar 

  19. T.H. Nam, K. Goto, Y. Yamaguchi, E.V.A. Premalal, Y. Shimamura, Y. Inoue, K. Naito, and S. Ogihara, Compos. Part A Appl. Sci. Manuf. 76, 289 (2015).

    Article  CAS  Google Scholar 

  20. S.U. Khan, J.R. Pothnis, and J.K. Kim, Compos. Part A Appl. Sci. Manuf. 49, 26 (2013).

    Article  CAS  Google Scholar 

  21. T.H. Nam, K. Goto, Y. Yamaguchi, E.V.A. Premalal, Y. Shimamura, Y. Inoue, S. Arikawa, S. Yoneyama, and S. Ogihara, Compos. Part B Eng. 85, 15 (2015).

    Article  Google Scholar 

  22. H. Ma, Z. Li, X. Tian, S. Yan, Z. Li, X. Guo, Y. Ma, and L. Ma, J. Electron. Mater. 47, 2929 (2018).

    Article  CAS  Google Scholar 

  23. M. Oleksy, K. Szwarc-Rzepka, M. Heneczkowski, R. Oliwa, and T. Jesionowski, Materials 7, 6064 (2014).

    Article  CAS  Google Scholar 

  24. L. Li and J.E. Morris, An Introduction to Electrically Conductive Adhesive (1998). http://web.cecs.pdx.edu/∼jmorris/Research%20&%20Publications/Electrically%20Conductive%20Adhesives/Int%20J%20Microelectronics%20Packaging%201%20(1998)%20159%20ICA%20Introduction.pdf. Accessed 3 March 2020.

  25. M.M. Nasaruddin, Reliability performance of epoxy based electrically conductive adhesive with varying multiwalled carbon nanotube. Master Thesis, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia (2019).

  26. W.A. Rahman, S.H.S.M. Fadzullah, M.M. Nasaruddin, G. Omar, and M. B. Ramli in CAMMER Conference Proceedings (2018), pp. 46–47.

  27. C.L. Poh, M. Mariatti, M.N. AhmadFauzi, O. Sidek, T.P. Chuah, and S.C. Chow, Proc. Chem. 19, 865 (2016).

    Article  CAS  Google Scholar 

  28. J. Sow, S.H. Sheikh, M. Fadzullah, M.M. Nasaruddin, N.A. Masripan, M.R. Mansor, and M. Salim, in MERD Conference Proceedings (2019), pp. 1–2.

  29. American Society for Testing and Materials. ASTM F390-98 (2003).

  30. W. Zulhilmi, The functional properties of silver/carbon canotube hybrid composite. Bachelor Degree Thesis, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia (2019).

  31. M.M. Nasaruddin, S.H.S.M. Fadzullah, G. Omar, Z. Mustafa, M. Ramli, M.Z. Akop, I.S. Mohamad, and B. Çoşut, J. Adv. Manuf. Technol. 13, 133 (2019).

    Google Scholar 

  32. American Society for Testing and Materials. ASTM D 1002 (2005).

  33. H.W. Cui, J.T. Jiu, K. Suganuma, and H. Uchida, RSC Adv. 5, 7200 (2015).

    Article  CAS  Google Scholar 

  34. J. Trinidad, Evaluation of hybrid electrically conductive adhesives. Master Thesis, University of Waterloo, Ontario, Canada (2016).

  35. K. Srinivas, M.S. Bhagyashekar, and B.G. Darshan, J. Polym. Compos. 6, 25 (2018).

    CAS  Google Scholar 

  36. M.M. Nasaruddin, S.H.S.M. Fadzullah, and G. Omar, Int. J. Recent Technol. Eng. 8, 28 (2019).

    Google Scholar 

  37. K. Srinivas, M.S. Bhagyashekar, and S.M. Mahesh, in ICCTEST Conference Proceedings (2017), pp. 182–188.

  38. Y. Tijjani, F. Mohd Yasin, M.H.S. Ismail, and A.H. Mohamed Ariff, J. Ceram. Soc. Jpn. 126, 984 (2018).

    Article  CAS  Google Scholar 

  39. R. Aradhana, S. Mohanty, and S.K. Nayak, J. Mater. Sci. Mater. Electron. 30, 4296 (2019).

    Article  CAS  Google Scholar 

  40. A. Pantano, Carbon Nanotube-Reinforced Polymers, ed. R. Rafiee (Amsterdam: Elsevier, 2018), p. 201.

    Chapter  Google Scholar 

  41. I. Taraghi, A. Fereidoon, and A. Mohyeddin, Steel Compos. Struct. 17, 825 (2014).

    Article  Google Scholar 

  42. A. Gursel, A.A. Mohamad, and M.F.M. Nazerib, in IMSTEC Conference Proceedings (2019), pp. 108–114.

  43. A.S. Subramanian, J.N. Tey, L. Zhang, B.H. Ng, S. Roy, J. Wei, and X. ‘Matthew’ Hu, Polymer 82, 285 (2015).

    Article  Google Scholar 

  44. P. Jojibabu, G.D.J. Ram, A.P. Deshpande, and S. Rao, Polym. Degrad. Stab. 140, 84 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Zamalah Scheme under Universiti Teknikal Malaysia Melaka (UTeM) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. S. M. Fadzullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadzullah, S.H.S.M., Adnan, Z., Omar, G. et al. Effect of Hybridization on the Functional Properties of AgMF–MWCNT-Filled Electrically Conductive Adhesive. J. Electron. Mater. 49, 6572–6581 (2020). https://doi.org/10.1007/s11664-020-08427-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08427-w

Keywords

Navigation