Skip to main content
Log in

Strained CdZnTe/CdTe Superlattices As Threading Dislocation Filters in Lattice Mismatched MBE Growth of CdTe on GaSb

  • Topical Collection: U.S. Workshop on Physics and Chemistry of II-VI Materials 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, multiple sets of CdZnTe/CdTe strained-layer superlattices have been used as dislocation filtering layers for reducing the threading dislocations and improving the material quality of CdTe buffer layers grown by molecular beam epitaxy (MBE) on GaSb (211)B substrates. By incorporating a CdZnTe/CdTe superlattice filtering structure, a significant improvement in material quality has been achieved, with a low etch pit density of ∼ 1 × 105 cm−2 demonstrated for CdTe grown on GaSb, which is two orders of magnitude lower than previously reported values for CdTe grown directly on lattice mismatched substrates, and is comparable to values for state-of-the-art CdTe grown on lattice matched CdZnTe substrates. The filtering efficiency for each set of dislocation filtering layers has been determined to be approximately 70%. This approach provides a promising pathway towards achieving hetero-epitaxy of high quality HgCdTe on large-area lattice-mismatched alternative substrates with a low dislocation density for the fabrication of next generation infrared detectors with features of lower cost and larger array format size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Reddy, J.M. Peterson, T. Vang, J.A. Franklin, M.F. Vilela, K. Olsson, E.A. Patten, W.A. Radford, J.W. Bangs, and L. Melkonian, J. Electron. Mater. 40, 1706 (2011).

    CAS  Google Scholar 

  2. M.F. Vilela, K.R. Olsson, E.M. Norton, J.M. Peterson, K. Rybnicek, D.R. Rhiger, C.W. Fulk, J.W. Bangs, D.D. Lofgreen, and S.M. Johnson, J. Electron. Mater. 42, 3231 (2013).

    CAS  Google Scholar 

  3. J.P. Zanatta, G. Badano, P. Ballet, C. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal, and A. Million, J. Electron. Mater. 35, 1231 (2006).

    CAS  Google Scholar 

  4. M.F. Vilela, D.D. Lofgreen, E.P.G. Smith, M.D. Newton, G.M. Venzor, J.M. Peterson, J.J. Franklin, M. Reddy, Y. Thai, E.A. Patten, S.M. Johnson, and M.Z. Tidrow, J. Electron. Mater. 37, 1465 (2008).

    CAS  Google Scholar 

  5. M. Carmody, A. Yulius, D. Edwall, D. Lee, E. Piquette, R. Jacobs, D. Benson, A. Stoltz, J. Markunas, and A. Almeida, J. Electron. Mater. 41, 2719 (2012).

    CAS  Google Scholar 

  6. W. Lei, J. Nanosci. Nanotechnol. 18, 7349 (2018).

    CAS  Google Scholar 

  7. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, and L. Faraone, J. Electron. Mater. 43, 2788 (2014).

    CAS  Google Scholar 

  8. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).

    Google Scholar 

  9. W.D. Hu, Z.H. Ye, L. Liao, H.L. Chen, L. Chen, R.J. Ding, L. He, X.S. Chen, and W. Lu, Opt. Lett. 39, 5184 (2014).

    Google Scholar 

  10. J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, J.M. Arias, G. Brill, Y. Chen, P.S. Wijewarnasuriya, S. Farrell, and U. Lee, J. Electron. Mater. 41, 2971 (2012).

    CAS  Google Scholar 

  11. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. 10, 1499 (1992).

    CAS  Google Scholar 

  12. W. Lei, Y.L. Ren, I. Madni, and L. Faraone, Infrared Phys. Technol. 92, 96 (2018).

    CAS  Google Scholar 

  13. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, G. Neusser, M. Sieger, B. Mizaikoff, and L. Faraone, J. Electron. Mater. 44, 3180 (2015).

    CAS  Google Scholar 

  14. R. Gu, J. Antoszewski, W. Lei, I. Madni, G. Umana-Membrenao, and L. Faraone, J. Cryst. Growth 468, 216 (2017).

    CAS  Google Scholar 

  15. S. Farrell, M.V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, D. Benson, and K. Harris, J. Electron. Mater. 40, 1727 (2011).

    CAS  Google Scholar 

  16. Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, and N. Dhar, J. Cryst. Growth 310, 5303 (2008).

    CAS  Google Scholar 

  17. I. George, F. Becagli, H.Y. Liu, J. Wu, M. Tang, and R. Beanland, Semicond. Sci. Technol. 30, 114004 (2015).

    Google Scholar 

  18. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S.N. Elliott, A. Sobiesierski, A.J. Seeds, and I. Ross, Nat. Photonics 10, 307 (2016).

    Google Scholar 

  19. B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song and J. Klamkin, Appl. Phys. Lett. 114, 172102 (2019).

  20. J.L. Reno, S. Chadda, and K. Malloy, Appl. Phys. Lett. 63, 1827 (1993).

    CAS  Google Scholar 

  21. A. Hobbs, O. Ueda, I. Sugiyama, and H. Takigawa, J. Cryst. Growth 117, 475 (1992).

    CAS  Google Scholar 

  22. Y. Chang, C.H. Grein, J. Zhao, S. Sivanathan, C.Z. Wang, T. Aoki, D.J. Smith, P.S. Wijewarnasuriya, and V. Nathan, J. Appl. Phys. 100, 114316 (2006).

    Google Scholar 

  23. A.J. Ciani and P.W. Chung, J. Electron. Mater. 39, 1063 (2010).

    CAS  Google Scholar 

  24. G. Patriarche, A. Girard-François, J.-P. Rivière, and J. Castaing, Mater. Sci. Eng., B 45, 76 (1997).

    Google Scholar 

  25. W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, and H.F. Schaake, J. Electron. Mater. 24, 505 (1995).

    CAS  Google Scholar 

  26. V. Srikant, J.S. Speck, and D.R. Clarke, J. Appl. Phys. 82, 4286 (1997).

    CAS  Google Scholar 

  27. M. Polat, O. Ari, O. Ozturk, and Y. Selamet, Mater. Res. Express 4, 035904 (2017).

    Google Scholar 

  28. S.Y. Woo, G.A. Devenyi, S. Ghanad-Tavakoli, R.N. Kleiman, J.S. Preston, and G.A. Botton, Appl. Phys. Lett. 102, 132103 (2013).

    Google Scholar 

  29. J. Cibert, R. André, C. Deshayes, G. Feuillet, P.H. Jouneau, L.S. Dang, R. Mallard, A. Nahmani, K. Saminadayar, and S. Tatarenko, Superlattices Microstruct. 9, 271 (1991).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (FT130101708, DP170104562, LP170100088, and LE170100233), and a Research Collaboration Award from the University of Western Australia. Facilities used in this work are supported by the WA node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W.W., Gu, R.J., Zhang, Z.K. et al. Strained CdZnTe/CdTe Superlattices As Threading Dislocation Filters in Lattice Mismatched MBE Growth of CdTe on GaSb. J. Electron. Mater. 49, 6983–6989 (2020). https://doi.org/10.1007/s11664-020-08406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08406-1

Keywords

Navigation