Skip to main content
Log in

Understanding Corrosion Behavior of Magnesium Surface by x-Ray Irradiation for Improved Surface Design and Applications

  • Surface Engineering: Applications for Advanced Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An advanced surface modification processing design has been developed to improve the corrosion resistance of magnesium (Mg) samples via x-ray irradiation in humid air. OH· radicals generated by water ionization during x-ray irradiation reacted with natural oxide films mainly consisting of Mg(OH)2, which resulted in the formation of an approximately 50-nm-thick magnesium oxide (MgO) dense surface film as a protection layer against corrosion. After x-ray irradiation for 24 h, pure Mg and its alloy (AZ91D) specimens underwent the saltwater immersion test and exhibited a remarkable reduction in corrosion rate (80-85%). They were also compared to as-received samples after polishing treatment. This surface modification process is environmentally friendly because it does not release any hazardous materials because of the high recycling ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008).

    Article  Google Scholar 

  2. M. Gupta and N. Gupta, Int. J Aeronaut. Aerosp. Res. 4, 141 (2017).

    Google Scholar 

  3. G. Song, B. Johannesson, S. Hapugoda, and D. StJohn, Corros. Sci. 46, 955 (2004).

    Article  Google Scholar 

  4. J.R. Davis, Metal Handbook, 2nd ed. (OH: ASM International, 1998).

    Google Scholar 

  5. C. Carraro, R. Maboudian, and L. Magagnin, Surf. Sci. Rep. 62, 499 (2007).

    Article  Google Scholar 

  6. S. Bilouk, L. Broussous, R.P. Nogueira, V. Ivanova, and C. Pernel, Microelectron. Eng. 86, 2038 (2009).

    Article  Google Scholar 

  7. S. Ono, K. Asami, and N. Masuko, Mater. Trans. 42, 1225 (2001).

    Article  Google Scholar 

  8. C. Blawert, W. Dietzel, E. Ghali, and G. Song, Adv. Eng. Mater. 8, 511 (2006).

    Article  Google Scholar 

  9. K. Funatsu, R. Takei, J. Umeda, and K. Kondoh, Trans. JWRI 40, 9 (2011).

    Google Scholar 

  10. H.C. Thomas and G.R. Frysinger, Annu. Rev. Phys. Chem. 7, 137 (1956).

    Article  Google Scholar 

  11. A.J. Bard and J.A.A. Ketelaar, Encyclopedia of Electrochemistry of the Elements (New York: Marcel Dekker Inc, 1978), pp. 78–89.

    Google Scholar 

  12. A.J. Bethube, N.A. Swendeman-Loud, Standard aqueous electrode potentials and temperature coefficients at 25C. (Cliford Hampel Inc, 1964), 22–28.

  13. E. Brillas, P.L. Cabot, R.M. Rodríguez, C. Arias, J. Garrido, and R. Oliver, Appl. Catal. B 51, 117 (2004).

    Article  Google Scholar 

  14. K. Yagi, J. Murata, A. Kubota, Y. Sano, H. Hara, K. Arima, T. Okamoto, H. Mimura, and K. Yamauchi, Jpn. J. Appl. Phys. 47, 104 (2007).

    Article  Google Scholar 

  15. J. Murata, A. Kubota, K. Yagi, Y. Sano, H. Hara, K. Arima, T. Okamoto, H. Mimura, K. Yamauchi, and J. Cryst, Growth 310, 1637 (2008).

    Article  Google Scholar 

  16. T. Harb, W. Kedzierski, and J.W. McConkey, J. Phys. Chem. 115, 5507 (2001).

    Article  Google Scholar 

  17. J.H. Nordlien, S. Ono, N. Masuko, and K. Misancioglu, J. Electrochem. Soc. 142, 3320 (1995).

    Article  Google Scholar 

  18. V. Fournier, P. Marcus, and I. Olefjord, Surf. Interface Anal. 34, 494 (2002).

    Article  Google Scholar 

  19. O. Friedrichs, J.C. Sánchez-López, C. López-Cartes, M. Dornheim, T. Klassen, R. Bormann, and A. Fernández, Appl. Surf. Sci. 252, 2334 (2006).

    Article  Google Scholar 

  20. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Minnesota: Perkin-Elmer Corp, 1995), pp. 230–232.

    Google Scholar 

  21. F.J.A. Dean, Lange’s Handbook of Chemistry, 12th ed. (New York: McGraw-Hill BOOK Co., 1979).

    Google Scholar 

  22. I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (New York: Springer, 1973).

    Google Scholar 

  23. M.J. Van and M. Pourbaix, Magnesium Atlas of Electrochemical Equilibria in Aqueous Solution (Oxford: Pergamon Press, 1966).

    Google Scholar 

  24. T. Schaefer and H. Herrmann, Chem. Phys. 20, 10939 (2018).

    Google Scholar 

  25. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, and J. Phys, Chem. Ref. Data 17, 513 (1988).

    Article  Google Scholar 

  26. A. Ly, J.A. Aguilera, and J.R. Milligan, Radiat. Phys. Chem. 76, 982 (2007).

    Article  Google Scholar 

  27. C. Wagner, Z Phys. Chem. B 21, 25 (1933).

    Google Scholar 

  28. T. Lei, C. Ouyang, W. Tang, L. Li, and L. Zhou, Corros. Sci. 52, 3504 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyoshi Kondoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondoh, K., Funatsu, K., Takahashi, M. et al. Understanding Corrosion Behavior of Magnesium Surface by x-Ray Irradiation for Improved Surface Design and Applications. JOM 72, 4657–4664 (2020). https://doi.org/10.1007/s11837-020-04403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04403-1

Navigation