Skip to main content
Log in

New Physics Right-Chiral CC Coupling Constant Estimation in Neutrino Oscillation Experiments

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The error probability of the discrimination of the Standard Model (SM) with massive neutrinos and its new physics (NP) model extension in experiments of the muon neutrino oscillation, following the pion decay \(\pi ^{+} \rightarrow \mu ^{+} + \nu _{\mu }\), is calculated. The stability of the estimation of the NP charged current coupling constant εR is analysed and the robustness of this estimation is checked. It is shown that the upper bound on the error probability of erroneous identification of the Standard Model with its NP model extension has reached the significantly small value of approximately 2.3 × 10− 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Tanabashi M., et al.: (Particle Data Group): Chapter 14. Neutrino Masses, Mixing, and Oscillations. Phys. Rev. D 98, 030001 (2018). and 2019 update

    ADS  Google Scholar 

  2. Chakrabortty, J., Gluza, J., Jeliński, T., Srivastava, T.: Theoretical constraints on masses of heavy particles in Left-Right symmetric models. Phys. Lett. B 759, 361–368 (2016)

    ADS  Google Scholar 

  3. Quigg, Ch.: Beyond the standard model in many directions. FERMILAB-Conf-04/049-T, arXiv:hep-ph/0404228

  4. Dekens, W., Boer, D.: Viability of minimal left-right models with discrete symmetries. Nucl. Phys. B 889, 727–756 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Tanabashi, M., et al.: (Particle Data Group): Chapter 10. Electroweak Model and Constraints on New Physics. Phys. Rev. D 98, 030001 (2018). and 2019 update

    ADS  Google Scholar 

  6. Siringo, F.: Symmetry breaking of the symmetric left-right model without a scalar bidoublet. Eur. Phys. J. C 32, 555–559 (2004)

    ADS  Google Scholar 

  7. Mohapatra, R. N., Pati, J.C.: “Natural” left-right symmetry. Phys. Rev. D 11, 2558–2561 (1975)

    ADS  Google Scholar 

  8. Zuber, K.: Neutrino physics. Taylor & Francis Group, New York (2004)

    Google Scholar 

  9. Bergmann, S., Grossman, Y., Nardi, E.: Neutrino propagation in matter with general interactions. Phys. Rev. D 60, 093008 (1999)

    ADS  Google Scholar 

  10. del Aguila, F., de Blas, J., Szafron, R., Wudka, J., Zrałek, M.: Evidence for right-handed neutrinos at a neutrino factory. Phys. Lett. B 683, 282–288 (2010)

    ADS  Google Scholar 

  11. del Aguila, F., Syska, J., Zrałek, M.: Impact of right-handed interactions on the propagation of Dirac and Majorana neutrinos in matter. Phys. Rev. D 76, 013007 (2007)

    ADS  Google Scholar 

  12. Giunti, C., Kim, C. W.: Fundamentals of neutrino physics and astrophysics. Oxford University Press, Oxford (2007)

    Google Scholar 

  13. Ochman, M., Szafron, R., Zrałek, M.: Neutrino production state in oscillation phenomena - are they pure or mixed. J. Phys. G 35, 065003 (2008)

    ADS  Google Scholar 

  14. Kuno, Y., Okada, Y.: Muon decay and physics beyond the standard model. Rev. Mod. Phys. 73, 151–202 (2001)

    ADS  Google Scholar 

  15. Syska, J., Zaja̧c, S., Zrałek, M.: Neutrino oscillations in the case of general interaction. Acta Phys. Pol. B 38(11), 3365–3371 (2007)

    ADS  Google Scholar 

  16. Halzen, F., Martin, A.D.: Quarks and leptons: An introductory course in modern particle physics, p 264. John Wiley & Sons Inc., New York (1984)

    Google Scholar 

  17. Fetscher, W.: Helicity of the νμ in π+ decay: A comment on the measurement of Pμξδϱ in muon decay. Phys. Lett. B 140, 117–118 (1984)

    ADS  Google Scholar 

  18. Tanabashi, M., et al.: (Particle Data Group). Phys. Rev. D 98, 030001 (2018). p.1070, π+ - POLARIZATION OF EMITTED μ+. http://pdglive.lbl.gov/DataBlock.action?node=S008POL

    ADS  Google Scholar 

  19. Berman, S.M.: Radiative corrections to pion beta decay. Phys. Rev. Lett. 1, 468–469 (1958)

    ADS  Google Scholar 

  20. Kinoshita, T.: Radiative corrections to πe decay. Phys. Rev. Lett. 2, 477–480 (1959)

    ADS  Google Scholar 

  21. Marciano, W.J., Sirlin, A.: Radiative corrections to πl2 decays. Phys. Rev. Lett. 71, 3629–3632 (1993)

    ADS  Google Scholar 

  22. Campbell, B.A., Maybury, D.W.: Constraints on scalar couplings from \({\pi }^{\pm } \rightarrow l^{\pm } {\nu }_{l}\). Nucl. Phys. B 709, 419–439 (2005)

    ADS  MATH  Google Scholar 

  23. Ecker, G., Gasser, J., Pich, A., de Rafael, E.: The role of resonances in chiral perturbation theory. Nucl. Phys. B 321, 311–342 (1989)

    ADS  Google Scholar 

  24. Maki, Z., Nakagawa, M., Sakata, S.: Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962)

    ADS  MATH  Google Scholar 

  25. Pontecorvo, B.: Neutrino experiments and the problem of conservation of leptonic charge. JETP 26, 984–988 (1968)

    ADS  Google Scholar 

  26. Dajka, J., Syska, J., Łuczka, J.: Geometric phase of neutrino propagating through dissipative matter. Phys. Rev. D 83, 097302 (2011)

    ADS  Google Scholar 

  27. Jones, B.J.P.: Dynamical pion collapse and the coherence of conventional neutrino beams. Phys. Rev. D 91, 053002 (2015)

    ADS  Google Scholar 

  28. Szafron, R., Zrałek, M.: Oscillation of Dirac and Majorana neutrinos from muon decay in the case of a general interaction. Phys. Lett. B 718, 113–116 (2012)

    ADS  Google Scholar 

  29. Syska, J., Dajka, J., Łuczka, J.: Interference phenomenon and geometric phase for Dirac neutrino in π+ decay. Phys. Rev. D 87, 117302 (2013)

    ADS  Google Scholar 

  30. Syska, J.: Neutrino oscillations in the presence of the crust magnetization. Nucl. Instr. Methods Phys. Res., Sect. A 630, 242–245 (2011)

    ADS  Google Scholar 

  31. Kim, C.W., Pevsner, A.: Neutrinos in physics and astrophysics. Contemp. Concepts Phys. Vol. 8 Harwood Academic Publishers (1993)

  32. Bekman, B., Gluza, J., Holeczek, J., Syska, J., Zrałek, M.: Matter effects and CP violating neutrino oscillations with non-decoupling heavy neutrinos. Phys. Rev. D 66, 093004 (2002)

    ADS  Google Scholar 

  33. del Aguila, F., Syska, J., Zrałek, M.: Neutrino oscillations beyond the Standard Model. https://arxiv.org/abs/0809.2759v1

  34. Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004)

    ADS  Google Scholar 

  35. Bengtsson, I., Życzkowski, K.: Geometry of quantum states. An introduction to quantum entanglement, 2nd edn. Cambridge University Press, Cambridge (2017). pp. 52, 360, 369, 370, 389 395

    MATH  Google Scholar 

  36. Rasmussen, R.W., Lechner, L., Ackermann, M., Kowalski, M., Winter, W.: Astrophysical neutrinos flavored with beyond the standard model physics. Phys. Rev. D 96, 083018 (2017)

    ADS  Google Scholar 

  37. Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99–114 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Ogawa, T., Nagaoka, H.: Strong converse and Stein’s lemma in quantum hypothesis testing. In: Hayashi, M. (ed.) Asymptotic theory of quantum statistical inference, selected papers. 28-42 Japan Science and Technology Agency & University of Tokyo (2005)

  39. Umegaki, H.: Conditional expectation in an operator algebra. IV. Entropy and information. Ködai Math. Sem. Rep. 14(2), 59–85 (1962)

    MathSciNet  MATH  Google Scholar 

  40. Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)

    ADS  MathSciNet  Google Scholar 

  41. Li, K.: Second-order asymptotics for quantum hypothesis testing. Ann. Statist. 42(1), 171–189 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39, 111–119 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)

    MathSciNet  MATH  Google Scholar 

  44. Hoeffding, W.: Asymptotically optimal tests for multinomial distributions. Ann. Math. Statist. 36(2), 369–401 (1965)

    MathSciNet  MATH  Google Scholar 

  45. Sanov, I.N.: On the probability of large deviations of random variables. (Russian) Mat. Sbornik N. S. 42 (84), No.1, 11-44 (1957). English translation:, Select. Transl. Mat.. Statist. and Probability 1, 213–244 (1961)

  46. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. An Introduction to Quantum Entanglement, 2nd edn., p 43 (with 28) 389. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  47. Amari, S., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs. Vol.191. Oxford University Press, Oxford (2000)

    Google Scholar 

  48. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Majtey, A.P., Lamberti, P.W., Prato, D.P.: Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A 72, 052310 (2005)

    ADS  Google Scholar 

  50. Adamson, P., et al.: (MINOS Collaboration): Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys. Rev. Lett. 110, 251801 (2013)

    ADS  Google Scholar 

  51. Acero, M.A., et al.: (NOvA Collaboration): New constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment. Phys. Rev. D 98, 032012 (2018)

    ADS  Google Scholar 

  52. Abe, K., et al.: (The T2K Collaboration): Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 × 1021 protons on target. Phys. Rev. D 96, 011102(R) (2017)

    ADS  Google Scholar 

  53. Carroll, T.J.: Muon neutrino disappearance measurement at MINOS+. J. Phys. Conf. Ser. 888, 012161 (2017)

    Google Scholar 

  54. Acciarri, R., et al.: (The DUNE Collaboration): Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) conceptual design report. Volume 2: The physics program for DUNE at LBNF. https://arxiv.org/abs/1512.06148

Download references

Acknowledgements

This work has been supported by L.J.Ch.. It has been also supported by the Institute of Physics, University of Silesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Syska.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The density matrix at the detection point

Appendix: The density matrix at the detection point

The effective Hamiltonian \({{\mathscr{H}}}\), (5), and neutrino density matrix ρPμ, (3), have the 6 × 6-dimensional matrix representations. The diagonalisation of \({{\mathscr{H}}} \) [11, 31, 32] gives \({{\mathscr{H}}} = \frac {1}{2 E_{\nu }} W \text {diag} (\tilde {m}_{l}^{2}) W^{\dagger }\), where W is the diagonalising unitary matrix defined by the eigenvectors of \(2 E_{\nu } {{\mathscr{H}}}\), and the corresponding real eigenvalues \(\tilde {m}_{l}^{2}\), l = 1,..., 6, are the neutrino effective squared masses. Eν is the neutrino energy, neglecting the mass contribution. W ≡ (Wiλ;l) ≡ (λνi|l〉) defines the transformation from the helicity-mass basis |νiλ ≡|p,λ, i〉 to the eigenvector basis |l〉 of \({{\mathscr{H}}}\). For the relativistic neutrino νμ and in the non-dissipative homogeneous medium, from (4) it follows that in |νiλ basis the density matrix at the point z = L of νμ detection is [15]:

$$ \begin{array}{@{}rcl@{}} \varrho^{\mu n; n^{\prime}}_{\sigma; \sigma^{\prime}} (t = T) = \sum\limits_{i \lambda} \sum\limits_{i^{\prime} \lambda^{\prime}} \sum\limits_{l,l^{\prime}} W_{n \sigma; l} W_{i \lambda; l}^{*} \varrho^{\mathrm{P} \mu i; i^{\prime}}_{\lambda; \lambda^{\prime}} (t = 0) e^{- i {\Delta} E_{ll^{\prime}} T} W_{i^{\prime} \lambda^{\prime}; l^{\prime}} W_{n^{\prime} \sigma^{\prime}; l^{\prime}}^{*} , \end{array} $$
(22)

where T is the time between neutrino production and detection, \({\Delta } E_{ll^{\prime }} \equiv E_{l} - E_{l^{\prime }} = \frac {\Delta \tilde {m}_{ll^{\prime }}^{2}}{2 E_{\nu }} = \frac {\tilde {m}_{l}^{2} - \tilde {m}_{l^{\prime }}^{2}}{2 E_{\nu }}\). The equality \(\varrho _{\text {\textbf {L}}}^{\mu }(\vec {\mathrm {p}}_{\text {\textbf {L}}}) = \varrho ^{\mu }(\vec {\mathrm {p}})\) of the density matrices in the L frame and CM frame is assumed [13]. Because of the W matrix unitarity, the L frame neutrino density matrix at the detection point is normalized, i.e., Tr[ϱμ(t = T)] = 1. Equation (22) is valid in the so-called light-ray approximation T = L [12]. The deviation of T from the relation T = L is experimentally significant if some corrections \(\varepsilon _{ll^{\prime }}\) [12] to the oscillation phases \({\Delta } \phi _{ll^{\prime }} = |{\Delta } E_{ll^{\prime }}| T\) are also significant. As \(\varepsilon _{ll^{\prime }}\) are functions of \({\Delta } \phi _{ll^{\prime }}\), this would require \({\Delta } \phi _{ll^{\prime }} \gg 1\) [12]. However, for the oscillations to be measurable at all, it is necessary that \({\Delta } \phi _{ll^{\prime }} \sim 1\), in which case the corrections \(\varepsilon _{ll^{\prime }}\) to \({\Delta } \phi _{ll^{\prime }}\) can be neglected [12], validating the light-ray approximation.

Finally, using ϱμ(t = T), (22), one can also calculate, e.g., the geometric phase of the μ flavour neutrino state [29] or the cross section \(\sigma _{\mu \rightarrow \beta }\) for the detection of the β flavour neutrino in the L frame [15, 33].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syska, J. New Physics Right-Chiral CC Coupling Constant Estimation in Neutrino Oscillation Experiments. Int J Theor Phys 60, 655–666 (2021). https://doi.org/10.1007/s10773-020-04612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04612-z

Keywords

Navigation