Skip to main content
Log in

Additive Manufacturing of Functional Microarchitected Reactors for Energy, Environmental, and Biological Applications

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The use of microreactors in the continuous fluidic system has been rapidly expanded over the past three decades. Developments in materials science and engineering have accelerated the advancement of the microreactor technology, enabling it to play a critical role in chemical, biological, and energy applications. The emerging paradigm of digital additive manufacturing broadens the range of the material flexibility, innovative structural design, and new functionality of the conventional microreactor system. The control of spatial arrangements with functional printable materials determines the mass transport and energy transfer within architected microreactors, which are significant for many emerging applications, including use in catalytic, biological, battery, or photochemical reactors. However, challenges such as lack of design based on multiphysics modeling and material validation are currently preventing the broader applications and impacts of functional microreactors conjugated with digital manufacturing beyond the laboratory scale. This review covers a state-of-the-art of research in the development of some of the most advanced digital manufactured functional microreactors. We then the outline major challenges in the field and provide our perspectives on future research and development directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(b Reprinted from reference [1] with permission. c Reprinted from references [3,4,5,6] with permission)

Fig. 2

(Note that some pictures have been reproduced from Refs. [3,4,5,6] with permission)

Fig. 3

(Reprinted from reference [11] with permission)

Fig. 4
Fig. 5

(a Reprinted from reference [8] with permission. b Reprinted from reference [37] with permission. c Reprinted from reference [38] with permission. d, e Reprinted from reference [40] with permission. f Reprinted from reference [41] with permission)

Fig. 6

(a Reprinted from reference [46] with permission. b Reprinted from reference [44] with permission. c Reprinted from reference [45] with permission)

Fig. 7

(a Reprinted from reference [47] with permission. b Reprinted from reference [48] with permission. c Reprinted from reference [34] with permission. d Reprinted from reference [49] with permission. e Reprinted from reference [50] with permission. f Reprinted from reference [51] with permission. g Reprinted from reference [52] with permission)

Fig. 8

(a Reprinted from reference [54] with permission. b Reprinted from reference [55] with permission. c Reprinted from reference [56] with permission)

Fig. 9

(a Reprinted from reference [57] with permission. b Reprinted from reference [59] with permission. c Reprinted from reference [60] with permission)

Fig. 10

(a Reprinted from reference [62] with permission. b Reprinted from reference [63] with permission. c Reprinted from reference [64] with permission. d Reprinted from reference [65] with permission. e Reprinted from reference [66] with permission. f Reprinted from reference [67] with permission)

Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ehrfeld, W., Hessel, V., & Lowe, H. (2000). Microreactors: new technology for modern chemistry. Weinheim: WILEY-VCH Verlag GmbH.

    Google Scholar 

  2. Yazdi, A., Popma, A., Wong, A., Nguyenm, W., Pan, T., Y., and Xu, J. (2016). 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid, 20(3), 50.

    Google Scholar 

  3. Ikuta, K., Maruo, S., Fujisawa, T., & Tamada, A. (1999). Micro concentrator with opto-sense micro reactor for biochemical IC chip family. 3D composite structure and experimental verification. In: International workshop on micro electro mechanical systems, MEMS 12, pp. 376–381.

  4. Ikuta, K., Ogata, T., Tsubio, M., & Kojima, S. (1996). Development of mass productive micro stereo lithography (Mass-IH process). In: Proceedings of ninth international workshop on micro electromechanical systems, pp. 301–306.

  5. Ikuta, K., Hirowatari, K., & Ogata, T. (1994). Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography. In: Proceedings IEEE micro electro mechanical systems an investigation of micro structures, sensors, actuators, machines and robotic systems, pp. 1–6.

  6. Ikuta, K., Maruo, T., Fukaya, Y., & Fujisawa, T. (1998). Biochemical IC chip toward cell free DNA protein synthesis. In: Proceedings MEMS 98. IEEE. Eleventh annual international workshop on micro electro mechanical systems. An investigation of micro structures, sensors, actuators, machines and systems, 98CH36176, pp. 131–136.

  7. Teh, K. (2017). Additive direct-write microfabrication for MEMS: a review. Frontiers of Mechanical Enginerring, 12(4), 490–509.

    Google Scholar 

  8. Parra-Cabrera, C., Achille, C., Kuhn, S., & Ameloot, R. (2018). 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chemical Society Reviews, 47(1), 209–230.

    Google Scholar 

  9. Surjadi, J. U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N. X., et al. (2019). Mechanical metamaterials and their engineering applications. Advanced Engineering Materials, 21(3), 1800864.

    Google Scholar 

  10. Parra-Cabrera, C., Achille, C., Kuhn, S., & Ameloot, R. (2018). 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chemical Society Reviews, 47(1), 209–230.

    Google Scholar 

  11. Moroni, L., Boland, T., Burdick, J. A., Maria, C., Derby, B., Forgacs, C., et al. (2018). Biofabrication: a guide to technology and terminology. Trends in Biotechnology, 36(4), 384–402.

    Google Scholar 

  12. Simpson, R. L., Wiria, F. E., Amis, A. A., Chua, C. K., Leong, K. F., Hansen, U. N., Chandrasekaran, M., & Lee, M. W. (2008). Development of a 95/5 poly (L-lactide‐co‐glycolide)/hydroxylapatite and β‐tricalcium phosphate scaffold as bone replacement material via selective laser sintering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84(1), 17–25.

    Google Scholar 

  13. Zhou, W. Y., Lee, S. H., Wang, M., Cheung, W. L., & Ip, W. Y. (2008). Selective laser sintering of porous tissue engineering scaffolds from poly (L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. Journal of Materials Science: Materials in Medicine, 19(7), 2535–2540.

    Google Scholar 

  14. Wang, Z., Abdulla, R., Parker, B., Samanipour, R., Ghosh, S., & Kim, K. (2015). A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4), 045009.

    Google Scholar 

  15. Schaedler, T. A., & Carter, W. B. (2016). Architected cellular materials. Annual Review of Materials Research, 46, 187–210.

    Google Scholar 

  16. Ge, Q., Li, Z., Wang, Z., Zhang, W., He, X., Zhou, J., & Fang, N. (2020). Projection micro stereolithography based 3D printing and its applications. International Journal of Extreme Manufacturing. https://doi.org/10.1088/2631-7990/ab8d9a

    Article  Google Scholar 

  17. Ovsianikov, A., & Chichkov, B. N. (2012). Three-dimensional microfabrication by two-photon polymerization technique. Methods in Molecular Biology, 868, 311–325.

    Google Scholar 

  18. Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., & Dunn, M. L. (2016). Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6, 31110.

    Google Scholar 

  19. Sun, C., Fang, N., Wu, D. M., & Zhang, X. (2005). Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A: Physical, 121(1), 113–120.

    Google Scholar 

  20. Gauvin, R., Chen, Y. C., Lee, J. W., Soman, P., Zorlutuna, P., Nichol, J. W., Bae, H., Chen, S., & Khademhosseini, A. (2012). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33(15), 3824–3834.

    Google Scholar 

  21. Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., et al. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349–1352.

    Google Scholar 

  22. Jacobsen, A. J., Barvosa-Carter, W., & Nutt, S. (2007). Micro‐scale truss structures formed from self‐propagating photopolymer waveguides. Advanced Materials, 19(22), 3892–3896.

    Google Scholar 

  23. Moroni, L., De Wijn, J. R., & Van Blitterswijk, C. A. (2006). 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials, 27(7), 974–985.

    Google Scholar 

  24. Giordano, R. A., Wu, B. M., Borland, S. W., Cima, L. G., Sachs, E. M., & Cima, M. J. (1997). Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. Journal of Biomaterials Science, Polymer Edition, 8(1), 63–75.

    Google Scholar 

  25. Pfister, A., Landers, R., Laib, A., Hübner, U., Schmelzeisen, R., & Mülhaupt, R. (2004). Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 624–638.

    Google Scholar 

  26. Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A., & Tan, N. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272.

    Google Scholar 

  27. Bashur, C. A., et al. (2006). Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials, 27, 5681–5688.

    Google Scholar 

  28. Shusteff, M., Browar, A. E. M., Kelly, B. E., Henriksson, J., Weisgraber, T. H., & Panas, R. M. (2017). One-step volumetric additive manufacturing of complex polymer structures. Science Advances, 3(12), eaao5496.

    Google Scholar 

  29. Kelly, B. E., Bhattacharya, I., Heidari, H., Shusteff, M., Spadaccini, C. M., & Taylor, H. K. (2019). Volumetric additive manufacturing via tomographic reconstruction. Science, 363(6431), 1075–1079.

    Google Scholar 

  30. Beer, M. P., Laan, H. L., Cole, M. A., Whelan, R. J., Burns, M. A., & Scott, T. F. (2019). Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Science Advances, 5(1), eaau8723.

    Google Scholar 

  31. Leung, Y. S., Kwok, T. H., Li, X., Yang, Y., Wang, C. C., & Chen, Y. (2019). Challenges and status on design and computation for emerging additive manufacturing technologies. Journal of Computing and Information Science in Engineering, 19(2), 021013.

    Google Scholar 

  32. Guzzi, E. A., & Tibbitt, M. W. (2020). Additive manufacturing of precision biomaterials. Advanced Materials, 32(13), 1901994.

    Google Scholar 

  33. Chen, X., Liu, W., Dong, B., Lee, J., Ware, H. O. T., Zhang, H. F., et al. (2018). High-speed 3D printing of millimeter‐size customized aspheric imaging lenses with sub 7 nm surface roughness. Advanced Materials, 30(18), 1705683.

    Google Scholar 

  34. Urrios, A., Parra-Cavrera, C., Bhattacharjee, N., Gonzalez-Suarez, A. M., Rigat-Brugarolas, L. G., Nallapatti, U., et al. (2016). 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on a Chip, 16(12), 2287–2294.

    Google Scholar 

  35. Cutmann, B., Kockinger, M., Glotz, G., Ciaglia, T., Slama, E., Zadravec, M., et al. (2017). Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. Reaction Chemistry & Engineering, 2(6), 919–927.

    Google Scholar 

  36. Osanov, M., & Guset, J. K. (2016). Topology optimization for architected materials design. Annual Review of Materials Research, 46, 211–233.

    Google Scholar 

  37. Okkels, F., & Bruus, H. (2007). Scaling behavior of optimally structured catalytic microfluidic reactors. Physical Review E, 75(1), 016301.

    Google Scholar 

  38. Bai, H., Theuerkauf, J., Gillis, P. A., & Witt, P. M. (2009). A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles. Industrial & Engineering Chemistry Research, 48(8), 4060–4074.

    Google Scholar 

  39. Torre, A. D., Montenegro, G., Onroati, A., & Tabor, G. (2015). CFD characterization of pressure drop and heat transfer inside porous substrates. Energy Procedia, 81, 836–845.

    Google Scholar 

  40. Kao, P.-H., Ren, T.-F., & Yang, R.-J. (2007). An investigation into fixed-bed microreactors using lattice Boltzmann method simulations. International Journal of Heat and Mass Transfer, 50(21–22), 4243–4255.

    MATH  Google Scholar 

  41. Ortega-Casanova, J. (2017). Application of CFD on the optimization by response surface methodology of a micromixing unit and its use as a chemical microreactor. Chemical Engineering and Processing: Process Intensification, 117, 18–26.

    Google Scholar 

  42. https://www.altair.com/topology-optimization/.

  43. http://www.withinlab.com/software/new_index.php.

  44. Tonomura, O., Tanaka, S., & Noda, M. (2004). CFD-based optimal design of manifold in plate-fin microdevices. Chemical Engineering Journal, 101(1–3), 397–402.

    Google Scholar 

  45. Schapper, D., Fernandes, R. L., Lantz, A. E., Okkels, F., Bruus, H., & Gernaeym, K. V. (2010). Topology optimized microbioreactors. Biotechnology and Bioengineering, 108(4), 786–796.

    Google Scholar 

  46. Egan, P. F., Gonella, V. C., Engensperger, M., Ferguson, S. J., & Shea, K. (2017). Computationally designed lattices with tuned properties for tissue engineering using 3D printing. PLOS One, 12(8), e0182902.

    Google Scholar 

  47. Kitson, P. J., Marshall, R. J., Long, D., Forgan, R. S., & Cronin, L. (2014). 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale‐up. Angewandte Chemie International Edition in English, 53(47), 12723–12728.

    Google Scholar 

  48. Capel, A. J., Edmondson, S., Christie, S. D. R., Goodridge, R. D., Bibb, R. J., & Thurstans, M. (2013). Design and additive manufacture for flow chemistry. Lab on a Chip, 13(23), 4583–4590.

    Google Scholar 

  49. Rossi, S., Porta, R., Brenna, D., Puglisi, A., & Benaglia, M. (2017). Stereoselective catalytic synthesis of active pharmaceutical ingredients in homemade 3D-printed mesoreactors. Angewandte Chemie, 56(15), 4290–4294.

    Google Scholar 

  50. Sochol, R. D., Sweet, E., Glick, C. C., Venkatesh, S., Avetisyan, A., Ekman, K. F., et al. (2016). 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab on a Chip, 16(4), 668–678.

    Google Scholar 

  51. Gong, H., Woolley, A. T., & Nordin, G. P. (2016). High density 3D printed microfluidic valves, pumps, and multiplexers. Lab on a Chip, 16(13), 2450–2458.

    Google Scholar 

  52. Bhargava, K. C., Thompson, B., & Malmstadt, N. (2014). Discrete elements for 3D microfluidics. Proceedings of the National Academy of Sciences, 111(42), 15013–15018.

    Google Scholar 

  53. Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J. T., Bowman, R. W., et al. (2012). Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry, 4(5), 349–354.

    Google Scholar 

  54. Xia, C., & Fang, N. X. (2009). 3D microfabricated bioreactor with capillaries. Biomedical Microdevices, 11(6), 1309–1315.

    Google Scholar 

  55. Roper, C. S., Schubert, R. C., Maloney, K. J., Page, D., Ro, C. J., Yang, S. S., et al. (2015). Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs. Advanced Materials, 27(15), 2479–2484.

    Google Scholar 

  56. Espinosa-Hoyos, D., Jagielska, A., Homan, K. A., Du, H., Busbee, T., Anderson, D. G., et al. (2018). Engineered 3D-printed artificial axons. Scientific Reports, 8(1), 478.

    Google Scholar 

  57. Ma, X., Qu, X., Zhu, W., Li, Y., Yuan, S., Zhang, H., et al. (2016). Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2206–2211.

    Google Scholar 

  58. Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhnag, T., Zhang, K., et al. (2014). Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 6(3), 035001.

    Google Scholar 

  59. Yang, D., Niu, X., Liu, Y., Wang, T., Gu, X., Song, L., et al. (2018). Electrospun nanofibrous membranes: a novel solid substrate for microfluidic immunoassays for HIV. Advanced Materials, 20(24), 4770–4775.

    Google Scholar 

  60. Lee, H., & Cho, D. (2016). One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab on a Chip, 16(14), 2618–2625.

    Google Scholar 

  61. Li, H., Tan, C., & Li, L. (2018). Review of 3D printable hydrogels and constructs. Materials & Design, 159, 20–38.

    Google Scholar 

  62. Leon, C. P., Hussey, W., Frazao, F., Jones, D., Ruggeri, E., Tzortzatos, S., et al. (2014). The 3D printing of a polymeric electrochemical cell body and its characterisation. Chemical Engineering Transactions, 41, 1–6.

    Google Scholar 

  63. Guo, N., Leu, M. C., & Koylu, U. O. (2014). Bio-inspired flow field designs for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 39(36), 21185–21195.

    Google Scholar 

  64. Chisholm, G., Kitson, P. J., Kirkaldy, N. D., Bloor, L. G., & Cronin, L. (2018). 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy & Environmental Science, 7(9), 3026–3032.

    Google Scholar 

  65. Hashemi, S. M. H., Karnakov, P., Hadikhani, P., Chinello, E., Litvinov, S., Moser, C., et al. (2019). A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy & Environmental Science, 12(5), 1592–1604.

    Google Scholar 

  66. Lee, C., Taylor, A. C., Beirne, S., & Wallace, G. G. (2017). 3D-printed conical arrays of TiO2 electrodes for enhanced photoelectrochemical water splitting. Advanced Energy Materials, 7(21), 1701060.

    Google Scholar 

  67. Zhu, C., Qi, Z., Beck, V. A., Luneau, m, Lattimer, J., Chen, W., et al. (2018). Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing. Science Advances, 4(8), eaas9459.

    Google Scholar 

  68. Tian, X., Jin, J., Yuan, S., Chua, C. K., Tor, S. B., & Zhou, K. (2017). Emerging 3D-printed electrochemical energy storage devices: a critical review. Advanced Energy Materials, 7(17), 1700127.

    Google Scholar 

  69. Yuan, S., Shen, F., Chua, C. K., & Zhou, K. (2019). Polymeric composites for powder-based additive manufacturing: materials and applications. Progress in Polymer Science, 91, 141–168.

    Google Scholar 

  70. Li, R., Yuan, S., Zhang, W., Zheng, H., Zhu, W., Li, B., et al. (2019). 3D printing of mixed matrix films based on metal–organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. ACS Applied Materials & Interfaces, 11(43), 40564–40574.

    Google Scholar 

  71. Kotz, F., Risch, P., Helmer, D., & Rapp, B. E. (2019). High-performance materials for 3D printing in chemical synthesis applications. Advanced Materials, 31(26), 1805982.

    Google Scholar 

  72. https://www.car-engineer.com/cordierite-for-catalytic-converters/.

  73. U.S. EPA Tier 3, https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-control-air-pollution-motor-vehicles-tier-3.

  74. Tubio, C. R., Azuaje, J., Escalante, L., Coelho, A., Guitian, F., Sotelo, E., et al. (2016). 3D printing of a heterogeneous copper-based catalyst. Journal of Catalysis, 334, 110–115.

    Google Scholar 

  75. Konarova, M., Aslam, W., Ge, L., Ma, Q., Tang, F., Rudolph, V., et al. (2017). Enabling process intensification by 3D printing of catalytic structures. ChemCatChem, 9(21), 4132–4138.

    Google Scholar 

  76. Al-Ketan, O., Pelanconi, M., Ortona, A., & Al-Rub, R. K. A. (2019). Additive manufacturing of architected catalytic ceramic substrates based on triply periodic minimal surfaces. Journal of the American Ceramic Society, 102(10), 6176–6193.

    Google Scholar 

  77. Zhou, X., & Liu, C. (2017). Three-dimensional printing for catalytic applications: current status and perspectives. Advanced Functional Materials, 27(30), 1701134.

    Google Scholar 

  78. Hensleigh, R. M., Cui, H., Oakdale, J. S., Ye, J. C., Campbell, P. G., Duoss, E. B., et al. (2018). Additive manufacturing of complex micro-architected graphene aerogels. Materials Horizons, 5(6), 1035–1041.

    Google Scholar 

  79. Zhu, C., Han, Y., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., et al. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 6(1), 6962.

    Google Scholar 

  80. Zhakeyev, A., Wang, P., & Zhang, L. (2017). Additive manufacturing unlocking the evolution of energy materials. Advanced Science, 4(10), 1700187.

    Google Scholar 

  81. Sun, K., Wei, T., Ahn, B. Y., Seo, J. Y., Dillon, S. J., & Lewis, J. A. (2013). 3D printing of interdigitated Li-ion microbattery architectures. Advanced Materials, 25(33), 4539–4543.

    Google Scholar 

  82. Saleh, M. S., Li, J., Park, J., & Panat, R. (2018). 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Additive Manufacturing, 23, 70–78.

    Google Scholar 

  83. Xu, C., Gallant, B. M., Wunderlich, P. U., Lohmann, T., & Greer, J. R. (2015). Three-dimensional Au microlattices as positive electrodes for Li–O2 batteries. ACS nano, 9(6), 5876–5883.

    Google Scholar 

  84. Cambie, D., Zhao, F., Hessel, V., Debije, M. G., & Noel, T. (2016). A leaf-inspired luminescent solar concentrator for energy‐efficient continuous‐flow photochemistry. Angewandte Chemie International Edition, 56(4), 1050–1054.

    Google Scholar 

  85. Zhao, F., Cambie, D., Janse, J., Wieland, E. W., Kuijpers, K. P. L., Hessel, V., et al. (2018). Scale-up of a luminescent solar concentrator-based photomicroreactor via numbering-up. ACS Sustainable Chemistry & Engineering, 6(1), 422–429.

    Google Scholar 

  86. Leung, Y.-S., Kwok, T.-H., Li, X., Yang, Y., Wang, C. C. L., & Chen, Y. (2019). Challenges and status on design and computation for emerging additive manufacturing technologies. Journal of Computing and Information Science in Engineering, 19(2), 021013.

    Google Scholar 

  87. Vaezi, M., Chianrabutra, S., Mellor, B., & Yang, S. (2013). Multiple material additive manufacturing – part 1: a review. Virtual and Physical Prototyping, 8(1), 19–50.

    Google Scholar 

  88. Lind, J. U., Busbee, T. A., Valentine, A. D., Pasqualini, F. S., Yuan, H., Yadid, M., et al. (2016). Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature Materials, 16, 303–308.

    Google Scholar 

  89. Mayer, F., Richter, S., Westhauser, J., Blasxo, E., Barner-Kowollik, C., & Wegener, M. (2019). Multimaterial 3D laser microprinting using an integrated microfluidic system. Science Advances, 5(2), eaau9160.

    Google Scholar 

  90. MacDonald, E., & Wicker, R. (2016). Multiprocess 3D printing for increasing component functionality. Science, 353(6307), aaf2093.

    Google Scholar 

  91. Chu, W.-S., Kim, M.-S., Jang, K.-H., Song, J.-H., Rodrigue, H., Chun, D.-M., et al. (2016). From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: a review and perspective of paradigm shift. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 209–222.

    Google Scholar 

  92. Yoon, H.-S., Jang, K.-H., Kim, E., Lee, H.-T., & Ahn, S.-H. (2017). Hybrid 3D printing by bridging micro/nano processes. International Journal of Precision Engineering and Manufacturing-Green Technology, 27(6), 065006.

    Google Scholar 

  93. Yoon, H.-S., Lee, H.-T., Jang, K.-H., Kim, C.-S., Park, H., Kim, D.-W., et al. (2017). CAD/CAM for scalable nanomanufacturing: a network-based system for hybrid 3D printing. Microsystems & Nanoengineering, 3, 17072.

    Google Scholar 

  94. Lim, J., Kim, Y. K., Won, D. J., Choi, I. H., Lee, S., & Kim, J. (2019). 3D printing of freestanding overhanging structures utilizing an in situ light guide. Advanced Materials Technologies, 4(8), 1900118.

    Google Scholar 

  95. Kim, D.-H., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., et al. (2018). Smart machining process using machine learning: a review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 555–568.

    Google Scholar 

  96. Qi, X., Chen, G., Li, Y., Cheng, X., & Li, C. (2019). Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering, 5(4), 721–729.

    Google Scholar 

  97. Zhou, Z., Li, X., & Zare, R. N. (2017). Optimizing chemical reactions with deep reinforcement learning. ACS Central Science, 3(12), 1337–1344.

    Google Scholar 

  98. Edington, C. D., Chen, W. L. K., Geishecker, E., Kassis, T., Soenksen, L. R., hushan, B. M., et al. (2018). Interconnected microphysiological systems for quantitative biology and pharmacology studies. Scientific Reports, 8, 4530.

    Google Scholar 

  99. Malinauskas, M., Zukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., et al. (2016). Ultrafast laser processing of materials: from science to industry. Light: Science & Applications, 5(8), e16133.

    Google Scholar 

  100. Hansen, C. J., Saksena, R., Kolesky, D. B., Vericella, J. J., Kranz, S. J., Muldowney, G. P., et al. (2012). High-throughput printing via microvascular multinozzle arrays. Advanced Materials, 25(1), 96–102.

    Google Scholar 

  101. Xu, B., Du, W.-Q., Li, J.-W., Hu, Y.-L., Yang, L., Zhang, C.-C., et al. (2016). High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports, 6, 19989.

    Google Scholar 

  102. Chang, J., Lee, S., Lee, K. B., Lee, S., Cho, Y. T., Seo, J., et al. (2015). Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system. The Review of scientific instruments, 86(5), 055108.

    Google Scholar 

  103. Hempel, M., Lu, A.-Y., Hui, F., Kpulun, T., Lanza, M., Harris, G., et al. (2018). Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale, 10(2), 5522–5531.

    Google Scholar 

  104. Liang, H.-L., Bay, M. M., Vadrucci, R., Barty-King, C. H., Peng, J., Baumberg, J. J., et al. (2018). Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nature Communication, 9(1), 4632.

    Google Scholar 

  105. Liedert, H. J., Hiltunen, C., Huttunen, M., Hiitola-Keinanen, O. H., Aikio, J., S., et al (2018). Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification. Lab on a Chip, 18(11), 1552–1559.

    Google Scholar 

  106. Wang, Q., Jackson, J. A., Hopkins, G. E. Q., Spadaccini, J. B., & Fang, N. X. (2016). Lightweight mechanical metamaterials with tunable negative thermal expansion. Physical Review Letter, 117, 175901.

    Google Scholar 

Download references

Acknowledgements

SK and NXF acknowledge support of a seed grant from the MIT Energy Initiative. NXF acknowledges support by the U. S. Army Research Office through the Institute for Soldier Nanotechnologies at MIT, under Contract Number W911NF-13-D-0001. SK acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1A5A808320112). DHK, WK, and YTC acknowledge support from the Technology Innovation Program (20007064, Realization of air cleaning mobility HAMA (superHydrophobic Additive Manufactured Air cleaner) Project funded by the Ministry of Trade, Industy and Energy (MOTIE, Korea) and all authors acknowledge support from the Ministry of Trade, Industry and Energy (MOTIE, Korea) under Industrial Technology Innovation Program (No. 20000665, Development of ecofriendly and highly durable surface treatment for superomniphobic substrate on the large area over 4 m2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Tae Cho or Nicholas X. Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, D.H., Kim, W. et al. Additive Manufacturing of Functional Microarchitected Reactors for Energy, Environmental, and Biological Applications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 303–326 (2021). https://doi.org/10.1007/s40684-020-00277-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00277-5

Keywords

Navigation