Skip to main content

Advertisement

Log in

Optimization of culture conditions for the efficient differentiation of mouse-induced pluripotent stem cells into dental epithelial-like cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The establishment of a method to derive dental epithelial cells seems to be an important challenge toward realizing the whole tooth regeneration. In order to obtain a source of dental epithelial-like cells, a new methodology has been previously developed by our research group. In the method, induced pluripotent stem cells are cultured in suspension in the presence of neurotrophin-4 to form embryoid bodies followed by further adherent culture of the embryoid bodies in DMEM basal nutrient medium. The present study was directed to improve the efficiency of dental epithelial-like cell production, by focusing on the optimization of initial cell number for the formation of embryoid bodies and the addition of epidermal growth factor as well as its timing. Our results demonstrated that an initial cell number of 1000 cells/drop gives the highest efficiency of dental epithelial-like cell production. It appears that, under this condition, medium deterioration is moderated, and that cell-cell interactions are optimized within embryoid bodies. On the other hand, epidermal growth factor serves to increase the abundance of dental epithelial-like cells when added to the medium together with neurotrophin-4 during embryoid body formation. The promotive effect of epidermal growth factor may involve the transactivation of TrkB, mediated by the effectors of epidermal growth factor receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Abdullah AN, Miyauchi S, Onishi A, Tanimoto K, Kato K (2019) Differentiation of mouse iPS cells into dental epithelial-like cells in the absence of added serum. In Vitro Cell Dev Biol Anim 55:130–137

    PubMed  Google Scholar 

  • Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, Saito M, Otsu K, Harada H, Yamada Y, Fukumoto S (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287:10590–10601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL (2006) Protein-protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115

    CAS  PubMed  Google Scholar 

  • Bluteau G, Luder HU, Bari CD, Mitsiadis TA (2008) Stem cells for tooth engineering. Eur Cell Mater 16:1–9

    CAS  PubMed  Google Scholar 

  • Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, van Bergen en Henegouwen P (1995) The epidermal growth factor. Cell Biol Int 19:413–430

    CAS  PubMed  Google Scholar 

  • Bratt-Leal AM, Carpenedo RL, McDevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K, Luo R, Wang L, Liu Y, Zhou T, Wei S, Pan G, Pei D (2013) Generation of tooth like structure from integration-free human urine induced pluripotent stem cells. Cell Regen. (Lond.) 2: 6

  • Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265:7709–7712

    CAS  PubMed  Google Scholar 

  • Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  • Colin R, Steven JB, Roger CS, Jennifer K (1998) The developing enamel matrix: nature and function. Eur J Oral Sci 106:282–291

    Google Scholar 

  • Couwenhoven RI, Snead ML (1994) Early determination and permissive expression of amelogenin transcription during mouse mandibular first molar development. Dev Biol 164:290–200

    CAS  PubMed  Google Scholar 

  • Domingues MG, Jaeger MM, Araujo VC, Araujo NS (2000) Expression of cytokeratins in human enamel organ. Eur J Oral Sci 108:43–47

    CAS  PubMed  Google Scholar 

  • Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC (2004) Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 83:523–538

    CAS  PubMed  Google Scholar 

  • Gupta R, Chaudhary M, Patil S, Fating C, Hande A, Suryawanshi H (2019) Expression of p63 in tooth germ, dentigerous cyst and ameloblastoma. J Oral Maxillofac Pathol 23:43–48

    PubMed  PubMed Central  Google Scholar 

  • Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21–26

    CAS  PubMed  Google Scholar 

  • Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M (2007) The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials 28:680–689

    CAS  PubMed  Google Scholar 

  • Hu JC, Sun X, Zhang C, Simmer JP (2001) A comparison of enamelin and amelogenin expression in developing mouse molars. Eur J Oral Sci 109:125–132

    CAS  PubMed  Google Scholar 

  • Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A 106:13475–13480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inage T, Shimokawa H, Teranishi Y, Iwase T, Toda Y, Moro I (1989) Immunocytochemical demonstration of amelogenins and enamelins secreted by ameloblasts during the secretory and maturation stages. Arch Histol Cytol 52:213–229

    CAS  PubMed  Google Scholar 

  • Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo H, Eto K, Toguchida J, Uemoto S, Yamanaka S (2012) Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:12538–12543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Yoon KS, Arakaki M, Otsu K, Fukumoto S, Harada H, Green DW, Lee JM, Jung HS (2018) Effective differentiation of induced pluripotent stem cells into dental cells. Dev Dyn 248:129–139

    PubMed  Google Scholar 

  • Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389–398

    CAS  PubMed  Google Scholar 

  • Lacruz RS, Habelitz S, Wright JT, Paine ML (2017) Dental enamel formation and implications for oral health and disease. Physiol Rev 97:939–993

    PubMed  PubMed Central  Google Scholar 

  • Lee FS, Chao M (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98:3555–3560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Ge S, Yang P (2015) Expression of cytokeratins in enamel organ, junctional epithelium and epithelial cell rests of Malassez. J Periodontal Res 50:846–854

    CAS  PubMed  Google Scholar 

  • Liu L, Liu YF, Zhang J, Duan YZ, Jin Y (2016) Ameloblasts serum-free conditioned medium: bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells. J Tissue Eng Regen Med 10:466–474

    CAS  PubMed  Google Scholar 

  • Malhotra N (2016) Induced pluripotent stem (iPS) cells in dentistry: a review. Int J Stem Cells 9:176–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medawar A, Virolle T, Rostagno P, de la Forest-Divonne S, Gambaro K, Rouleau M, Aberdam D (2008) ΔNp63 is essential for epidermal commitment of embryonic stem cells. PLoS One 3:e3441

    PubMed  PubMed Central  Google Scholar 

  • Mitsiadis TA, Pappagerakis P (2001) Regenerated teeth: the future of tooth replacement? Regen Med 6:135–139

    Google Scholar 

  • Ning F, Guo Y, Tang J, Zhou J, Zhang H, Lu W, Gao Y, Wang L, Pei D, Duan Y, Jin Y (2010) Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblast serum-free conditioned media. Biochem Biophys Res Commun 394:342–247

    CAS  PubMed  Google Scholar 

  • Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T (2011) Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One 6:e21531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osman H, Kora AS (2006) Immunohistochemical detection of cytokeratin 14 in developing enamel organ of rat molars. Egyptian Dent J 52:1399–1407

    Google Scholar 

  • Otsu K, Kishigami R, Oikawa-Sasaki A, Fukumoto S, Yamada A, Fujiwara N, Ishizeki K, Harada H (2012) Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev 21:1156–1164

    CAS  PubMed  Google Scholar 

  • Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, Harada H (2014) Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 5:36

    PubMed  PubMed Central  Google Scholar 

  • Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puehringer D, Orel N, Lüningschrör P, Subramanian N, Herrmann T, Chao MV, Sendtner M (2013) EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16:407–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal R, Chao MV (2006) A role for Fyn in Trk receptor transactivation by G-protein-coupled receptor signaling. Mol Cell Neurosci 33:36–46

    CAS  PubMed  Google Scholar 

  • Rufini A, Barlattani A, Docimo R, Velletri T, Niklison-Chirou MV, Agostini M, Melino G (2011) p63 in tooth development. Biochem Pharmacol 82:1256–1261

    CAS  PubMed  Google Scholar 

  • Sakurai M, Hayashi R, Kageyama T, Yamato M, Nishida K (2011) Induction of putative stratified epithelial progenitor cells in vitro from mouse-induced pluripotent stem cells. J Artif Organs 14:58–66

    CAS  PubMed  Google Scholar 

  • Snead ML, Paine ML, Luo W, Zhu DH, Yoshida B, Lei YP, Paine CT, Chen LS, Burstein JM, Jitpukdeebudintra S, White SN, Bringas P Jr (1998) Transgene animal model for protein expression and accumulation into forming enamel. Connect Tissue Res 38:279–286

    CAS  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    PubMed  PubMed Central  Google Scholar 

  • Tabata MJ, Matsumura T, Liu JG, Wakisaka S, Kurisu K (1996) Expression of cytokeratin 14 in ameloblast-lineage cells of the developing tooth of rat, both in vivo and in vitro. Arch Oral Biol 41:1019–1027

    CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  • Ten Cate AR (1996) The role of epithelium in the development, structure and function of the tissues of tooth support. Oral Dis 2:55–62

    PubMed  Google Scholar 

  • Uchida T, Tanabe T, Fukae M (1989) Immunocytochemical localization of amelogenins in the deciduous tooth germs of the human fetus. Arch Histol Cytol 52:543–552

    CAS  PubMed  Google Scholar 

  • Wong RW, Guilland L (2004) The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev 15:147–156

    CAS  PubMed  Google Scholar 

  • Yarden Y, Shilo BZ (2007) SnapShot: EGFR signaling pathway. Cell 131:1018

    PubMed  Google Scholar 

  • Yoshida K, Sato J, Takai R, Uehara O, Kurashige Y, Nishimura M, Chiba I, Saitoh M, Abiko Y (2015) Differentiation of mouse iPS cells into ameloblast-like cells in cultures using medium conditioned by epithelial cell rests of Malassez and gelatin-coated dishes. Med Mol Morphol 48:138–145

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Grant-in-Aid for Scientific Research, MEXT (no. 16H03182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kato.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, A., Abdullah, A.N., Tanimoto, K. et al. Optimization of culture conditions for the efficient differentiation of mouse-induced pluripotent stem cells into dental epithelial-like cells. In Vitro Cell.Dev.Biol.-Animal 56, 816–824 (2020). https://doi.org/10.1007/s11626-020-00505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00505-x

Keywords

Navigation