Skip to main content
Log in

Quantitative distribution characteristics of force chains for asphalt mixtures with three skeleton structures using discrete element method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Three digital specimens of asphalt mixtures (AC-13, SMA-13 and OGFC-13) were reconstructed to conduct a virtual simple performance test using the discrete element method. The distribution characteristics of force chains were investigated by a statistical method. The results indicate that it is reasonable and feasible to analyze the mesoscopic responses of asphalt mixtures using digital models. The probability distribution of the normal force chains varies with loading time and the variation laws are consistent at four loading times. And the probability distribution of the shear force chains decays exponentially. Besides, the maximum probability distributions of the normal and shear force chains decrease with increasing timestep. OGFC-13 has the maximum probability distributions of the normal and shear force chains, which are 0.34186 and 0.55884, respectively. The proportions of the “strong” force chains decrease over the loading time, and AC-13 has a maximum proportion of 49.41% for the three asphalt mixtures at four loading times. In addition, the angle distributions of the force chain are mainly near 90°, and the average ratio of the normal contact force to the mean normal contact force increases with increasing loading time at 90°. Finally, the angle distribution proportions in the first and second quadrants are much greater than those in the third and fourth quadrants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bouchaud, J.P., Cates, M.E., Claudin, P.: Stress distribution in granular media and nonlinear wave equation. J. Phys. I 5(6), 639–656 (1995)

    Google Scholar 

  2. Wittmer, J.P., Cates, M.E., Claudin, P.: Stress propagation and arching in static sandpiles. J. Phys. I 7(1), 39–80 (1997)

    Google Scholar 

  3. Cates, M.E., Wittmer, J.P., Bouchaud, J.P., Claudin, P.: Development of stresses in cohesionless poured sand. Philos. Trans. R. Soc. A 356(1747), 2535–2560 (1998)

    ADS  MATH  Google Scholar 

  4. Cates, M.E., Wittmer, J.P., Bouchaud, J.P., Claudin, P.: Jamming, force chains and fragile matter. Phys. Rev. Lett. 81(9), 1881–1884 (1998)

    ADS  Google Scholar 

  5. Claudin, P., Bouchaud, J.P.: Models of stress fluctuations in granular media. Phys. Rev. E 57(4), 4441–4456 (1998)

    ADS  Google Scholar 

  6. Tordesillas, A., Shi, J.Y., Muhlhaus, H.B.: Noncoaxiality and force chain evolution. Int. J. Eng. Sci. 47, 1386–1404 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Hunt, G.W., Tordesillas, A., Green, S.C., Shi, J.: Force-chain buckling in granular media: a structural mechanics perspective. Philos. Trans. A Math. Phys. Eng. Sci. 368(1910), 249–262 (2010)

    ADS  MATH  Google Scholar 

  8. Hunt, G.W., Hammond, J.: Mechanics of shear banding in a regularized two dimensional model of a granular medium. Philos. Mag. 92(28–30), 3483–3500 (2012)

    ADS  Google Scholar 

  9. Howell, D., Behringer, R.P.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82(26), 5241–5244 (1999)

    ADS  Google Scholar 

  10. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(23), 1079–1082 (2005)

    ADS  Google Scholar 

  11. Aste, T., Di Matteo, T., Galleani d’Agliano, E.: Stress transmission in granular matter. J. Phys. Condens. Matter 14(9), 2391–2402 (2002)

    ADS  Google Scholar 

  12. Sanfratello, L., Zhang, J., Cartee, S.C., Fukushima, E.: Exponential distribution of force chain lengths: a useful statistic that characterizes granular assemblies. Granul. Matter 13(5), 511–516 (2011)

    Google Scholar 

  13. Estep, J., Dufek, J.: Substrate effects from force chain dynamics in dense granular flows. J. Geophys. Res. Atmos. 117(F1), 1028–1039 (2012)

    ADS  Google Scholar 

  14. Fu, L.L., Gong, Q.M., Wang, C.D., Zhou, S.H.: Residual characteristics and meso-mechanism of contact force in granular materials under partial loading and unloading. J. Tongji Univ. (Nat. Sci.) 43(11), 1162–1168 (2015)

    Google Scholar 

  15. Jiang, Y.H., Miao, T.D., Lu, J.B.: A probabilistic model for force transmission in two dimensional granular packs. Chin. J. Geotech. Eng. 28(7), 881–885 (2006)

    Google Scholar 

  16. Yi, C.H., Liu, Y., Miao, T.D., Mu, Q.S., Qi, Y.L.: Force transmission in three-dimensional hexagonal-close-packed granular arrays with defect submitted to a point load. Granul. Matter 9(3), 195–203 (2007)

    Google Scholar 

  17. Miao, T.D., Yi, C.H., Qi, Y.L., Mu, Q.S., Liu, Y.: Force transmission in three-dimensional hexagonal-close-packed granular arrays submitted to a point load. Acta Phys. Sin. 56(8), 4713–4721 (2007)

    Google Scholar 

  18. Hu, Z.X., Du, Y.J., Luo, H.Y., Zhong, B., Lu, H.B.: Internal deformation measurement and force chain characterization of mason sand under confined compression using incremental digital volume correlation. Exp. Mech. 54(9), 1575–1586 (2014)

    Google Scholar 

  19. Chen, F.X., Zhang, H.X., Zhuang, Q.: The quasi-static response of granular materials to a concentrated loading. Chin. J. Appl. Mech. 32(2), 244–250 (2015)

    Google Scholar 

  20. Chen, F.X., Zhuang, Q., Wang, R.L.: A preliminary study of dynamic failure mechanism of force chain in a particle system based on digital image correlation. Rock Soil Mech. 37(2), 563–573 (2016)

    Google Scholar 

  21. Sanfratello, L., Fukushima, E., Behringer, R.P.: Using MR elastography to image the 3D force chain structure of a quasi-static granular assembly. Granul. Matter 11(1), 1–6 (2009)

    Google Scholar 

  22. Ostojic, S., Somfai, E., Nienhuis, B.: Scale invariance and universality of force networks in static granular matter. Nature 439, 828–830 (2006)

    ADS  Google Scholar 

  23. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81(1), 011302 (2010)

    ADS  Google Scholar 

  24. Tordesillas, A., Shi, J.Y., Tshaikiwsky, T.: Stress–dilatancy and force chain evolution. Int. J. Numer. Anal. Methods Geomech. 35(2), 264–292 (2010)

    MATH  Google Scholar 

  25. Tordesillas, A., Pucilowskia, S., Sibille, L., Nicot, F., Darve, F.: Multiscale characterisation of diffuse granular failure. Philos. Mag. 92(36), 4547–4587 (2012)

    ADS  Google Scholar 

  26. Wang, D.M., Zhou, Y.H.: Statistics of contact force network in dense granular matter. Particuology 8(2), 133–140 (2010)

    Google Scholar 

  27. Sun, Q.C., Jin, F., Wang, G.Q., Zhang, G.H.: Force chains in a uniaxially compressed static granular matter in 2D. Acta Phys. Sin. 59(1), 30–37 (2010)

    Google Scholar 

  28. Bi, Z.W., Sun, Q.C., Liu, J.G., Jin, F., Zhang, C.H.: Development of shear band in a granularmaterial in biaxial tests. Acta Phys. Sin. 60(3), 034502 (2011)

    Google Scholar 

  29. Azéma, E., Radjaï, F.: Force chains and contact network topology in packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)

    ADS  Google Scholar 

  30. Estep, J., Dufek, J.: Discrete element simulations of bed force anomalies due to force chains in dense granular flows. J. Volcanol. Geotherm. Res. 254, 108–117 (2012)

    ADS  Google Scholar 

  31. Chen, H., Liu, Y.L., Zhao, X.Q., Xiao, Y.G.: Analysis on avalanching motion and force chains of bed material within rotating cylinder based on discrete element method. J. Zhejiang Univ. (Eng. Sci.) 48(12), 2277–2283 (2014)

    Google Scholar 

  32. Chen, H., Liu, Y.L., Xiao, Y.G., Li, S.B.: Numerical experiments on transverse motion and force chains of solids in rotating cylinders. J Cent. South Univ. (Sci. Technol.) 46(7), 2446–2451 (2015)

    Google Scholar 

  33. Wu, D.P., Li, X.X., Qin, Q., Guan, B., Zang, Y.: Study on mechanical behavior of the transverseprocessing on a granular matter layer. Acta Phys. Sin. 63(9), 098201 (2014)

    Google Scholar 

  34. Zhao, C., Deng, X., Hu, L.: Force chains of the compressed and sheared granular matter in 3D. J. Shandong Univ. (Nat. Sci.) 49(5), 20–23 (2014)

    Google Scholar 

  35. Yang, H., Xu, W.J., Zhang, Q.B.: Macro-and meso-mechanism of strain localization in granular material. Chin. J. Rock Mech. Eng. 34(8), 1692–1701 (2015)

    Google Scholar 

  36. Ji, S.Y., Fan, L.F., Liang, S.M.: Buffer capacity of granular materials and its influencingfactors based on discrete element method. Acta Phys. Sin. 65(10), 104501 (2016)

    Google Scholar 

  37. Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.Y.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59(2), 265–296 (2011)

    ADS  MATH  Google Scholar 

  38. Tordesillas, A., Steer, C.A.H., Walker, D.M.: Force chain and contact cycle evolution in a dense granular material. Nonlinear Process. Geophys. 21(2), 505–519 (2014)

    ADS  Google Scholar 

  39. Guo, P.J.: Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech. 7(1), 41–55 (2012)

    Google Scholar 

  40. Bassett, D.S., Owens, E.T., Porter, M.A., Lisa Manning, M., Daniels, K.E.: Extraction of force-chain network architecture in granular materials using community detection. Soft Matter 11(14), 2731–2744 (2015)

    ADS  Google Scholar 

  41. Polojärvi, A., Tuhkuri, J., DEM Pustogvar, A.: simulations of direct shear box experiments of ice rubble: force chains and peak loads. Cold Reg. Sci. Technol. 116, 12–23 (2015)

    Google Scholar 

  42. Zhang, X., Zhao, C.F., Zhai, W.M.: Numerical analysis of static crushed behavior of railway ballast. J. Southwest Jiaotong Univ. 50(1), 137–143 (2015)

    Google Scholar 

  43. Liu, X.R., Li, D.L., Zhang, L., Wang, Z.: Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone. Chin. J. Geotech. Eng. 38(7), 1291–1300 (2016)

    Google Scholar 

  44. Yu, H.N., Shen, S.H.: A micromechanical based three-dimensional DEM approach to characterize the complex modulus of asphalt mixtures. Constr. Build. Mater. 38, 1089–1096 (2013)

    Google Scholar 

  45. Feng, H., Pettinari, M., Stang, H.: Study of normal and shear material properties for viscoelastic model of asphalt mixture by discrete element method. Constr. Build. Mater. 98, 366–375 (2015)

    Google Scholar 

  46. Peng, Y., Bao, J.X.: Comparative study of 2D and 3D micromechanical discrete element modeling of indirect tensile tests for asphalt mixtures. Int. J. Geomech. 18(6), 04018046 (2018)

    Google Scholar 

  47. Peng, Y., Bao, J.X.: Micromechanical analysis of asphalt-mixture shear strength using the three-dimensional discrete element method. J. Mater. Civ. Eng. 30(11), 04018302 (2018)

    Google Scholar 

  48. Peng, Y., Wan, L., Sun, L.J.: Three-dimensional discrete element modeling of influence factors of indirect tensile strength of asphalt mixtures. Int. J. Pavement Eng. 20(6), 724–733 (2019)

    Google Scholar 

  49. Li, X.L., Lv, X.C., Liu, X.Y., Ye, J.H.: Discrete element analysis of indirect tensile fatigue test of asphalt mixture. Appl. Sci. 9(2), 327 (2019)

    Google Scholar 

  50. Dondi, G., Vignali, V., Pettinari, M., Mazzotta, F., Simone, A., Sangiorgi, C.: Modeling the DSR complex shear modulus of asphalt binder using 3D discrete element approach. Constr. Build. Mater. 54, 236–246 (2014)

    Google Scholar 

  51. Vignali, V., Mazzotta, F., Sangiorgi, C., Simone, A., Lantieri, C., Dondi, G.: Incorporation of rubber powder as filler in a new Dry-Hybrid technology rheological and 3D DEM mastic performances evaluation. Materials 9(10), 842 (2016)

    ADS  Google Scholar 

  52. You, Z.P., Buttlar, W.G.: Micromechanical modeling approach to predict compressive dynamic moduli of asphalt mixture using the distinct element method. J Transp. Res. Board 1970, 73–83 (2006)

    Google Scholar 

  53. Buttlar, W.G., You, Z.P.: Discrete Element Modeling of Asphalt Concrete: Microfabric Approach. J. Transp. Res. Board 1757, 111–118 (2001)

    Google Scholar 

  54. Liu, Y., You, Z.P.: Visualization and simulation of asphalt concrete with randomly generated three-dimensional models. J. Comput. Civ. Eng. 23(6), 340–347 (2009)

    Google Scholar 

  55. Liu, Y., Dai, Q.L., You, Z.P.: Viscoelastic model for discrete element simulation of asphalt mixtures. J. Eng. Mech. 135(4), 324–333 (2009)

    Google Scholar 

  56. Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57(3), 3164–3169 (1998)

    ADS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Nos. 51408047, 51378073, 51408043, 51608046), the Department of Science and Technology of Shaanxi Province (Nos. 2016KJXX-69, 2016ZDJC-24) and the Special Fund for Basic Scientific Research of Central College of Chang'an University (Nos. 310831161002, 300102319205). The authors gratefully acknowledge their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfeng Chang.

Ethics declarations

Conflicts of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, M., Pei, J., Zhang, J. et al. Quantitative distribution characteristics of force chains for asphalt mixtures with three skeleton structures using discrete element method. Granular Matter 22, 87 (2020). https://doi.org/10.1007/s10035-020-01059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01059-1

Keywords

Navigation