Skip to main content
Log in

Linking shape and rotation of grains during triaxial compression of sand

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Particle shape has a strong effect on the mechanical response of coarse soils. This has been usually observed examining specimen-scale or engineering-scale responses, which are the sum of many microscale interactions. In this work we observe the effects of particle shape directly at the microscale level. X-ray tomography (μ-CT) of two sand specimens is exploited to measure three-dimensional particle shape descriptors but also to track individual particle motions during triaxial compression. A discrete digital volume correlation algorithm is employed to track the motion of individual grains (around 50,000 for each sand specimen) during the test and measure, with good precision, their cumulated displacements and rotations. The specimens examined failed in a clearly localised shear mode. Advantage is taken of this to obtain data relevant for very different kinematical regimes: one uniform and more constrained and the other close to critical state. A direct comparison between the shape and kinematic databases shows to what degree particle shape descriptors are related to observed kinematics. It appears that true sphericity is a good predictor of upper bound rotational restraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and materials (data transparency)

Available on request.

Code availability (software application or custom code)

Open-source Python programming language used.

References

  1. Jiang, M., Liu, F., Bolton, M.: Proceedings of the International Symposium on Geomechanics and Geotechnics: from Micro to Macro (IS-Shanghai 2010). CRC Press/Balkema, Shanghai (2011)

    Google Scholar 

  2. Soga, K., Kumar, K., Biscontin, G., Kuo, M.: Geomechanics from micro to macro. In: Proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro, Cambridge, UK, 1–3 Sept 2014 (2014)

  3. Baudet, B., Bolton, M.: Editorial soil mechanics at the grain scale: issue 1 and 2. Géotechnique 60, 313–314 (2010). https://doi.org/10.1680/geot.2010.60.5.313

    Article  Google Scholar 

  4. Cho, A.G., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness and strength—natural and crushed sands. J. Geotech. Geoenviron. Eng. 132, 591–602 (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)

    Article  Google Scholar 

  5. Santamarina, J., Cho, G.: Soil behaviour: the role of particle shape. In: Advances in Geotechnical Engineering. Proceedings of the Skempton Conference, pp. 1–14, London (2004)

  6. Yang, J., Luo, X.D.: Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids 84, 196–213 (2015). https://doi.org/10.1016/j.jmps.2015.08.001

    Article  ADS  Google Scholar 

  7. Xiao, Y., Long, L., Matthew Evans, T., Zhou, H., Liu, H., Stuedlein, A.W.: Effect of particle shape on stress-dilatancy responses of medium-dense sands. J. Geotech. Geoenviron. Eng. (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994

    Article  Google Scholar 

  8. Vaid, Y., Chern, J., Tumi, H.: Confining pressure, Grain angularity and Liquefaction. J. Geotech. Eng. 111, 1229–1235 (1985)

    Article  Google Scholar 

  9. Liu, Q.B., Lehane, B.M.: The influence of particle shape on the (centrifuge) cone penetration test (CPT) end resistance in uniformly graded granular soils. Géotechnique 60, 111–121 (2013). https://doi.org/10.1139/t06-037

    Article  Google Scholar 

  10. Rothenburg, L., Bathurst, R.J.: Micromechanical features of granular assemblies with planar elliptical particles. Géotechnique 42, 79–95 (1992). https://doi.org/10.1680/geot.1992.42.1.79

    Article  Google Scholar 

  11. Ng, T.-T., Lin, X.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47, 319–329 (1997). https://doi.org/10.1680/geot.1997.47.2.319

    Article  Google Scholar 

  12. Cleary, P.W.: The effect of particle shape on simple shear flows. Powder Technol. 179, 144–163 (2008). https://doi.org/10.1016/j.powtec.2007.06.018

    Article  Google Scholar 

  13. Ferellec, J.-F., Mcdowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter. 12, 459–467 (2010). https://doi.org/10.1007/s10035-010-0205-8

    Article  MATH  Google Scholar 

  14. Jiang, M.J., Liu, J.D., Arroyo, M.: Numerical evaluation of three non-coaxial kinematic models using the distinct element method for elliptical granular materials. Int. J. Numer. Anal. Methods Geomech. 40, 2468–2488 (2016). https://doi.org/10.1002/nag.2540

    Article  Google Scholar 

  15. Matsushima, T., Chang, C.S.: Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies. Granul. Matters. 13, 269–276 (2011). https://doi.org/10.1007/s10035-011-0263-6

    Article  Google Scholar 

  16. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124, 285–292 (1998). https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)

    Article  Google Scholar 

  17. Jiang, M.J.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005). https://doi.org/10.1016/j.compgeo.2005.05.001

    Article  Google Scholar 

  18. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36, 320–331 (2009). https://doi.org/10.1016/j.compgeo.2008.02.003

    Article  Google Scholar 

  19. Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y.: Implementation of rotational resistance models: a critical appraisal. Particuology 34, 14–23 (2017). https://doi.org/10.1016/j.partic.2016.08.007

    Article  Google Scholar 

  20. Coetzee, C.J.: Calibration of the discrete element method and the effect of particle shape. Powder Technol. 297, 50–70 (2016). https://doi.org/10.1016/j.powtec.2016.04.003

    Article  Google Scholar 

  21. Guillard, F., Marks, B., Einav, I.: Dynamic X-ray radiography reveals particle size and shape orientation fields during granular flow. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/s41598-017-08573-y

    Article  Google Scholar 

  22. Oda, M., Takemura, T., Takahashi, M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Géotechnique 54, 539–542 (2004)

    Article  Google Scholar 

  23. Matsushima, T., Uesugi, K., Nakano, T., Tsuchiyama, A.: Visualization of grain motion inside a triaxial specimen by micro X-ray CT at SPring-8. In: Desrues, J., Besuelle, P., Viggiani, G. (eds.) Advances in X-ray Tomography for Geomaterials, pp. 35–52. Wiley, London (2006)

    Google Scholar 

  24. Hall, S.A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., Bésuelle, P.: Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60, 315–322 (2010). https://doi.org/10.1680/geot.2010.60.5.315

    Article  Google Scholar 

  25. Hasan, A., Alshibli, K.A.: Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography. Géotechnique 60, 369–379 (2010). https://doi.org/10.1680/geot.2010.60.5.369

    Article  Google Scholar 

  26. Rorato, R., Arroyo, M., Andò, E., Gens, A.: Sphericity measures of sand grains. Eng. Geol. 254, 43–53 (2019). https://doi.org/10.1016/j.enggeo.2019.04.006

    Article  Google Scholar 

  27. Alshibli, K.A., Druckrey, A.M., Al-Raoush, R.I., Weiskittel, T., Lavrik, N.V.: Quantifying morphology of sands using 3D imaging. J. Mater. Civ. Eng. (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0001246

    Article  Google Scholar 

  28. Zhao, B., Wang, J.: 3D quantitative shape analysis on form, roundness, and compactness with micro-CT. Powder Technol. 291, 262–275 (2016). https://doi.org/10.1016/j.powtec.2015.12.029

    Article  Google Scholar 

  29. Kong, D., Fonseca, J.: Quantification of the morphology of shelly carbonate sands using 3D images. Géotechnique 68, 249–261 (2018). https://doi.org/10.1680/jgeot.16.P.278

    Article  Google Scholar 

  30. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Non-invasive characterization of particle morphology of natural sands. Soils Found. 52, 712–722 (2012). https://doi.org/10.1016/j.sandf.2012.07.011

    Article  Google Scholar 

  31. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Quantifying the evolution of soil fabric during shearing using directional parameters. Géotechnique 63, 818–829 (2013). https://doi.org/10.1680/geot.11.P.150

    Article  Google Scholar 

  32. Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7, 1–13 (2012). https://doi.org/10.1007/s11440-011-0151-6

    Article  Google Scholar 

  33. Hasan, A., Alshibli, K.: Three dimensional fabric evolution of sheared sand. Granul. Matter 14, 469–482 (2012). https://doi.org/10.1007/s10035-012-0353-0

    Article  Google Scholar 

  34. Higo, Y., Oka, F., Sato, T., Matsushima, Y., Kimoto, S.: Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils Found. 53, 181–198 (2013). https://doi.org/10.1016/j.sandf.2013.02.001

    Article  Google Scholar 

  35. Alshibli, K.A., Jarrar, M.F., Druckrey, A.M., Al-Raoush, R.I.: Influence of particle morphology on 3D kinematic behavior and strain localization of sheared sand. J. Geotech. Geoenviron. Eng. 143, 04016097 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001601

    Article  Google Scholar 

  36. Cheng, Z., Wang, J.: A particle-tracking method for experimental investigation of kinematics of sand particles under triaxial compression. Powder Technol. 328, 436–451 (2018). https://doi.org/10.1016/j.powtec.2017.12.071

    Article  Google Scholar 

  37. Wiebicke, M., Andò, E., Herle, I., Viggiani, G.: On the metrology of interparticle contacts in sand from X-ray tomography images. Meas. Sci. Technol. 28, 124007 (2018)

    Article  ADS  Google Scholar 

  38. Wiebicke, M., Andò, E., Salvatore, E., Viggiani, G., Herle, I.: Experimental measurement of granular fabric and its evolution under shearing. In: Radjai, F., Nezamabadi, S., Luding, S., Delenne, J.Y. (eds.) European Physical Journal Web of Conferences, p. 02020. EDP Sciences, Les Ulis (2017)

    Google Scholar 

  39. Wiebicke, M., Andò, E., Šmilauer, V., Herle, I., Viggiani, G.: A benchmark strategy for the experimental measurement of contact fabric. Granul. Matter 21(54), 1–13 (2019). https://doi.org/10.1007/s10035-019-0902-x

    Article  Google Scholar 

  40. Alshibli, K.A., Alramahi, B.A.: Microscopic evaluation of strain distribution in granular materials during shear. J. Geotech. Geoenviron. Eng. 132, 80–91 (2006). https://doi.org/10.1061/(asce)1090-0241(2006)132:1(80)

    Article  Google Scholar 

  41. Vlahinić, I., Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: From computed tomography to mechanics of granular materials via level set bridge. Acta Geotech. 12, 85–95 (2017). https://doi.org/10.1007/s11440-016-0491-3

    Article  Google Scholar 

  42. Cheng, Z., Wang, J.: Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography. Soils Found. 58, 1492–1510 (2018). https://doi.org/10.1016/j.sandf.2018.08.008

    Article  Google Scholar 

  43. Sutton, M.A., Schreier, H.W., Orteu, J.-J.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin (2009)

    Google Scholar 

  44. Hall, S.A.: Digital image correlation in experimental geomechanics. In: Viggiani, G., Hall, S.A., Romero, E. (eds.) ALERT Doctoral School 2012 Advanced experimental techniques in geomechanics, pp. 69–102. Aussois (France) (2012)

  45. Take, W.A.: Thirty-Sixth Canadian Geotechnical Colloquium: advances in visualization of geotechnical processes through digital image correlation. Can. Geotech. J. 52, 1199–1220 (2015). https://doi.org/10.1139/cgj-2014-0080

    Article  Google Scholar 

  46. Pan, B., Qian, K., Xie, H., Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. (2009). https://doi.org/10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  47. Stanier, S.A., Blaber, J., Take, W.A., White, D.J.: Improved image-based deformation measurement for geotechnical applications. Can. Geotech. J. 53, 727–739 (2016). https://doi.org/10.1139/cgj-2015-0253

    Article  Google Scholar 

  48. Pinyol, N.M., Alvarado, M.: Novel analysis for large strains based on particle image velocimetry. Can. Geotech. J. 54, 933–944 (2017)

    Article  Google Scholar 

  49. Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Experimental micromechanics: grain-scale observation of sand deformation. Géotech. Lett. 2, 107–112 (2012). https://doi.org/10.1680/geolett.12.00027

    Article  Google Scholar 

  50. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932)

    Article  ADS  Google Scholar 

  51. Barret, P.J.: The shape of rock particle, a critical review. Sedimentology 27, 291–303 (1980). https://doi.org/10.1111/j.1365-3091.1980.tb01179.x

    Article  ADS  Google Scholar 

  52. Zingg, T.: Beitrag zur Schotteranalyse. http://e-collection.library.ethz.ch/view/eth:21472 (1935). Accessed 20 Dec 2019

  53. Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J. Sedim. Res. 11, 64–72 (1941)

    Article  Google Scholar 

  54. Andò, E.: Experimental investigation of microstructural changes in deforming granular media using x-ray tomography. PhD Thesis, Université de Grenoble (2013)

  55. Salvatore, E., Modoni, G., Andò, E., Albano, M., Viggiani, G.: Determination of the critical state of granular materials with triaxial tests. Soils Found. 57, 733–744 (2017). https://doi.org/10.1016/j.sandf.2017.08.005

    Article  Google Scholar 

  56. Viggiani, G., Andò, E., Takano, D., Santamarina, J.C.: Laboratory X-ray tomography: a valuable experimental tool for revealing processes in soils. Geotech. Test. J. 38, 61–71 (2015). https://doi.org/10.1520/GTJ20140060

    Article  Google Scholar 

  57. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 21, 163–169 (1987). https://doi.org/10.1145/37402.37422

    Article  Google Scholar 

  58. Tudisco, E., Andò, E., Cailletaud, R., Hall, S.A.: TomoWarp2: a local digital volume correlation code. SoftwareX 6, 267–270 (2017). https://doi.org/10.1016/J.SOFTX.2017.10.002

    Article  ADS  Google Scholar 

  59. Campello, E.M.B.: A description of rotations for DEM models of particle systems. Comput. Part. Mech. 2, 109–125 (2015). https://doi.org/10.1007/s40571-015-0041-z

    Article  Google Scholar 

  60. Andò, E., Cailletaud, R., Roubin, E., Stamati, O., the spam contributors: SPAM: The Software for the Practical Analysis of Materials (2017). https://ttk.gricad-pages.univ-grenoble-alpes.fr/spam/

  61. Pannier, Y., Lenoir, N., Bornert, M.: Discrete volumetric digital image correlation for the investigation of granular type media at microscale: accuracy assessment. EPJ Web Conference (2010). https://doi.org/10.1051/epjconf/20100635003

    Article  Google Scholar 

  62. Catalano, E., Chareyre, B., Barthélémy, E.: Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int. J. Numer. Anal. Methods Geomech. 38, 51–71 (2014). https://doi.org/10.1002/nag.2198

    Article  Google Scholar 

  63. Šmilauer, V., et al.: Yade Documentation, 2nd edn. The Yade Project (2015). https://doi.org/10.5281/zenodo.34073

  64. Veje, C.T., Howell, D.W., Behringer, R.P.: Kinematics of a two-dimensional granular Couette experiment at the transition to shearing. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 59, 739–745 (1999). https://doi.org/10.1103/physreve.59.739

    Article  Google Scholar 

  65. Pasternak, E., Dyskin, A.V., Esin, M., Hassan, G.M., MacNish, C.: Rotations and pattern formation in granular materials under loading. Philos. Mag. 95, 3122–3145 (2015). https://doi.org/10.1080/14786435.2015.1059517

    Article  ADS  Google Scholar 

  66. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall, London (1994)

    Book  Google Scholar 

  67. Cole, D.M.: Laboratory Observations of Frictional Sliding of Individual Contacts in Geologic Materials. Granul. Matter 17(1), 95–110 (2015)

    Article  Google Scholar 

  68. Nardelli, V., Coop, M.R.: The experimental contact behaviour of natural sands: normal and tangential loading. Géotechnique 69(8), 672–686 (2019)

    Article  Google Scholar 

  69. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: All you need is shape: predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids 111, 375–392 (2018). https://doi.org/10.1016/j.jmps.2017.10.003

    Article  ADS  Google Scholar 

  70. Rorato, R., Arroyo, M., Gens, A., Andò, E., Viggiani, G.: Particle shape distribution effects on the triaxial response of sands: a DEM study. In: Giovine, P., et al. (eds.) Micro to Macro Mathematical Modelling in Soil Mechanics, Trends in Mathematics, pp. 277–286. Reggio Calabria (Italy) (2018)

  71. Rorato, R., Arroyo, M., Gens, A., Andò, E., Viggiani, G.: Image-based calibration of rolling resistance in discrete element models of sand. Comput. Geotech. (2020, under review)

Download references

Acknowledgements

The work here described has been supported by the Spanish Ministry of Economy through Grants BIA2014-59467-R and BIA2017-84752-R. Laboratoire 3SR is part of the LabEx Tec21 (Investissements d’Avenir - Grant Agreement nANR-11-LABX-0030).

Funding

Spanish Ministry of Economy (Grants BIA2014-59467-R and BIA2017-84752-R). Laboratoire 3SR is part of the LabEx Tec21 (Investissements d’Avenir - Grant Agreement nANR-11-LABX-0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rorato.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rorato, R., Arroyo Alvarez de Toledo, M., Andò, E.C.G. et al. Linking shape and rotation of grains during triaxial compression of sand. Granular Matter 22, 88 (2020). https://doi.org/10.1007/s10035-020-01058-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01058-2

Keywords

Navigation