Skip to main content
Log in

Patient-Specific Hemodynamics of New Coronary Artery Bypass Configurations

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to quantify the patient-specific hemodynamics of complex conduit routing configurations of coronary artery bypass grafting (CABG) operation which are specifically suitable for off-pump surgeries. Coronary perfusion efficacy and local hemodynamics of multiple left internal mammary artery (LIMA) with sequential and end-to-side anastomosis are investigated. Using a full anatomical model comprised of aortic arch and coronary artery branches the optimum perfusion configuration in multi-vessel coronary artery stenosis is desired.

Methodology

Two clinically relevant CABG configurations are created using a virtual surgical planning tool where for each configuration set, the stenosis level, anastomosis distance and angle were varied. A non-Newtonian computational fluid dynamics solver in OpenFOAM incorporated with resistance boundary conditions representing the coronary perfusion physiology was developed. The numerical accuracy is verified and results agreed well with a validated commercial cardiovascular flow solver and experiments. For segmental performance analysis, new coronary perfusion indices to quantify deviation from the healthy scenario were introduced.

Results

The first simulation configuration set;—a CABG targeting two stenos sites on the left anterior descending artery (LAD), the LIMA graft was capable of 31 mL/min blood supply for all the parametric cases and uphold the healthy LAD perfusion in agreement with the clinical experience. In the second end-to-side anastomosed graft configuration set;—the radial artery graft anastomosed to LIMA, a maximum of 64 mL/min flow rate in LIMA was observed. However, except LAD, the obtuse marginal (OM) and second marginal artery (m2) suffered poor perfusion. In the first set, average wall shear stress (WSS) were in the range of 4 to 35 dyns/cm2 for in LAD. Nevertheless, for second configuration sets the WSS values were higher as the LIMA could not supply enough blood to OM and m2.

Conclusion

The virtual surgical configurations have the potential to improve the quality of operation by providing quantitative surgical insight. The degree of stenosis is a critical factor in terms of coronary perfusion and WSS. The sequential anastomosis can be done safely if the anastomosis angle is less than 90 degrees regardless of degree of stenosis. The smaller proposed perfusion index value, O(0.04 − 0) × 102, enable us to quantify the post-op hemodynamic performance by comparing with the ideal healthy physiological flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CABG:

Coronary artery bypass grafting

CAD:

Coronary artery diseases

CEP:

Cerebral perfusion index

CFD:

Computational fluid dynamics

COP:

Coronary perfusion index

CT:

Computed tomography

IA:

Innominate artery

IH:

Intimal hyperplasia

LAD:

Left anterior descending

LCCA:

Left common carotid artery

LCX:

Left circumflex artery

LIMA:

Left internal mammary artery

LOP:

Lower Body Perfusion Index

LSA:

Left subclavian artery

OM:

Obtuse marginal

m2:

Second marginal artery

PCI:

Percutaneous coronary intervention

RA:

Radial artery

RCA:

Right coronary artery

RM:

Ramus marginalis

s1:

First septal artery

sec:

Section

VA:

Vertebral artery

WSS:

Wall shear stress

References

  1. Ahn, J.-M., D.-W. Park, C. W. Lee, M. Chang, R. Cavalcante, Y. Sotomi, et al. Comparison of stenting versus bypass surgery according to the completeness of revascularization in severe coronary artery disease: patient-level pooled analysis of the SYNTAX, PRECOMBAT, and BEST trials. JACC Cardiovasc. Interv. 10(14):1415–1424, 2017. https://doi.org/10.1016/j.jcin.2017.04.037.

    Article  Google Scholar 

  2. Al-Sabti, H. A., A. Al Kindi, K. Al-Rasadi, Y. Banerjee, K. Al-Hashmi, and A. Al-Hinai. Saphenous vein graft vs radial artery graft searching for the best second coronary artery bypass graft. J. Saudi Heart Assoc. 25(4):247–254, 2013. https://doi.org/10.1016/j.jsha.2013.06.001.

    Article  Google Scholar 

  3. Ballarin, F., E. Faggiano, A. Manzoni, A. Quarteroni, G. Rozza, S. Ippolito, et al. Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts. Biomech. Model. Mechanobiol. 16(4):1373–1399, 2017.

    Article  MATH  Google Scholar 

  4. Bisleri, G., L. Di Bacco, L. Giroletti, and C. Muneretto. Total arterial grafting is associated with improved clinical outcomes compared to conventional myocardial revascularization at 10 years follow-up. Heart Vessels 32(2):109–116, 2017. https://doi.org/10.1007/s00380-016-0846-6.

    Article  Google Scholar 

  5. Brien, T. O., M. Walsh, and T. McGloughlin. On reducing abnormal hemodynamics in the femoral end-to-side anastomosis: the influence of mechanical factors. Ann. Biomed. Eng. 33(3):310–322, 2005.

    Article  Google Scholar 

  6. Chen, J., X. Y. Lu, and W. Wang. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J. Biomech. 39(11):1983–1995, 2006. https://doi.org/10.1016/j.jbiomech.2005.06.012.

    Article  Google Scholar 

  7. Drouin, A., N. Noiseux, C. Chartrand-Lefebvre, G. Soulez, S. Mansour, J. A. Tremblay, et al. Composite versus conventional coronary artery bypass grafting strategy for the anterolateral territory: study protocol for a randomized controlled trial. Trials. 14:270, 2013. https://doi.org/10.1186/1745-6215-14-270.

    Article  Google Scholar 

  8. Dur, O., S. T. Coskun, K. O. Coskun, D. Frakes, L. B. Kara, and K. Pekkan. Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovas. Eng. Technol. 2(1):35–47, 2011. https://doi.org/10.1007/s13239-010-0029-z.

    Article  Google Scholar 

  9. Flemma, R. J., W. D. Johnson, and D. Lepley, Jr. Triple aorto-coronary vein bypass as treatment for coronary insufficiency. Arch. Surg. (Chicago, Ill: 1960) 103(1):82–83, 1971.

    Article  Google Scholar 

  10. Gatti, G., L. Dell’Angela, B. Benussi, L. Dreas, G. Forti, M. Gabrielli, et al. Bilateral internal thoracic artery grafting in octogenarians: where are the benefits? Heart Vessels 31(5):702–712, 2016. https://doi.org/10.1007/s00380-015-0675-z.

    Article  Google Scholar 

  11. Gaziano, T. A., A. Bitton, S. Anand, S. Abrahams-Gessel, and A. Murphy. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr. Probl. Cardiol. 35(2):72–115, 2010. https://doi.org/10.1016/j.cpcardiol.2009.10.002.

    Article  Google Scholar 

  12. Hajati, O., K. Zarrabi, R. Karimi, and A. Hajati. CFD simulation of hemodynamics in sequential and individual coronary bypass grafts based on multislice CT scan datasets. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2012:641–644, 2012. https://doi.org/10.1109/embc.2012.6346013.

    Article  Google Scholar 

  13. Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, et al. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133(4):041002, 2011.

    Article  Google Scholar 

  14. https://www.openfoam.com/.

  15. Jackson, Z. S., H. Ishibashi, A. I. Gotlieb, and B. L. Langille. Effects of anastomotic angle on vascular tissue responses at end-to-side arterial grafts. J. Vasc. Surg. 34(2):300–307, 2001.

    Article  Google Scholar 

  16. Kabinejadian, F., L. P. Chua, D. N. Ghista, M. Sankaranarayanan, and Y. S. Tan. A novel coronary artery bypass graft design of sequential anastomoses. Ann. Biomed. Eng. 38(10):3135–3150, 2010. https://doi.org/10.1007/s10439-010-0068-5.

    Article  Google Scholar 

  17. Keslerová, R., H. Řezníček, and T. Padělek. Numerical modelling of generalized Newtonian fluids in bypass tube. Adv. Comput. Math. 45(4):2047–2063, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  18. Keynton, R. S., M. M. Evancho, R. L. Sims, N. V. Rodway, A. Gobin, and S. E. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Eng. 123(5):464–473, 2001. https://doi.org/10.1115/1.1389461.

    Article  Google Scholar 

  19. Kieser, T. M., and D. P. Taggart. The use of intraoperative graft assessment in guiding graft revision. Ann. Cardiothorac. Surg. 7(5):652, 2018.

    Article  Google Scholar 

  20. Kurtoglu, M., S. Ates, T. Demirozu, I. Duvan, H. Y. Karagoz, and T. Aybek. Facile stabilization and exposure techniques in off-pump coronary bypass surgery. Ann. Thorac. Surg. 85(5):e30–e31, 2008. https://doi.org/10.1016/j.athoracsur.2008.02.025.

    Article  Google Scholar 

  21. Longest, P. W., C. Kleinstreuer, and A. Deanda. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Ann. Biomed. Eng. 33(12):1752–1766, 2005.

    Article  Google Scholar 

  22. Martínez-González, B., C. G. Reyes-Hernández, A. Quiroga-Garza, V. E. Rodríguez-Rodríguez, C. N. Esparza-Hernández, R. E. Elizondo-Omaña, et al. Conduits used in coronary artery bypass grafting: a review of morphological studies. Ann. Thorac. Cardiovasc. Surg. 23(2):55–65, 2017. https://doi.org/10.5761/atcs.ra.16-00178.

    Article  Google Scholar 

  23. Mohr, F. W., M. C. Morice, A. P. Kappetein, T. E. Feldman, E. Stahle, A. Colombo, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet (London, England). 381(9867):629–638, 2013. https://doi.org/10.1016/s0140-6736(13)60141-5.

    Article  Google Scholar 

  24. Moore, J., D. Steinman, S. Prakash, K. Johnston, and C. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121(3):265–272, 1999.

    Article  Google Scholar 

  25. Mueller, X. M., P.-G. Chassot, J. Zhou, K. M. Eisa, C. Chappuis, H. T. Tevaearai, et al. Hemodynamics optimization during off-pump coronary artery bypass: the ‘no compression’ technique. Eur. J. Cardiothorac. Surg. 22(2):249–254, 2002. https://doi.org/10.1016/s1010-7940(02)00270-1.

    Article  Google Scholar 

  26. Nazemi, M., C. Kleinstreuer, and J. P. Archie. Pulsatile two-dimensional flow and plaque formation in a carotid artery bifurcation. J. Biomech. 23(10):1031–1037, 1990. https://doi.org/10.1016/0021-9290(90)90318-W.

    Article  Google Scholar 

  27. Nordgaard, H., D. Nordhaug, I. Kirkeby-Garstad, L. Løvstakken, N. Vitale, and R. Haaverstad. Different graft flow patterns due to competitive flow or stenosis in the coronary anastomosis assessed by transit-time flowmetry in a porcine model. Eur. J. Cardiothorac. Surg. 36(1):137–142, 2009.

    Article  Google Scholar 

  28. Okrainec, K., D. K. Banerjee, and M. J. Eisenberg. Coronary artery disease in the developing world. Am. Heart J. 148(1):7–15, 2004. https://doi.org/10.1016/j.ahj.2003.11.027.

    Article  Google Scholar 

  29. Otsuka, F., K. Yahagi, K. Sakakura, and R. Virmani. Why is the mammary artery so special and what protects it from atherosclerosis? Ann. Cardiothorac. Surg. 2(4):519–526, 2013.

    Google Scholar 

  30. Piskin, S., G. Unal, A. Arnaz, T. Sarioglu, and K. Pekkan. Tetralogy of fallot surgical repair: shunt configurations, ductus arteriosus and the circle of Willis. Cardiovasc. Eng. Technol. 8(2):107–119, 2017. https://doi.org/10.1007/s13239-017-0302-5.

    Article  Google Scholar 

  31. Piskin, S., A. Undar, and K. Pekkan. Computational modeling of neonatal cardiopulmonary bypass hemodynamics with full circle of Willis Anatomy. Artif. Organs 39(10):E164–E175, 2015. https://doi.org/10.1111/aor.12468.

    Article  Google Scholar 

  32. Puskas, J. D., H. L. Lazar, M. J. Mack, J. F. Sabik, III, and Taggart D. Paul. State-of-the-art coronary artery bypass graft. Semin. Thorac. Cardiovasc. Surg. 26(1):76–94, 2014. https://doi.org/10.1053/j.semtcvs.2014.03.002.

    Article  Google Scholar 

  33. Qiao, A., and Y. Liu. Influence of graft–host diameter ratio on the hemodynamics of CABG. Bio-Med. Mater. Eng. 16(3):189–201, 2006.

    Google Scholar 

  34. Rodrigue, D. The generalized power-law: a new viscosity model. AIP Conf. Proc. 1027(1):1441–1443, 2008. https://doi.org/10.1063/1.2964603.

    Article  Google Scholar 

  35. Rosamond, W., K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, et al. Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146, 2008. https://doi.org/10.1161/circulationaha.107.187998.

    Article  Google Scholar 

  36. Samady, H., P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788, 2011.

    Article  Google Scholar 

  37. Sankaran, S., M. E. Moghadam, A. M. Kahn, E. E. Tseng, J. M. Guccione, and A. L. Marsden. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40(10):2228–2242, 2012.

    Article  Google Scholar 

  38. Sankaranarayanan, M., D. N. Ghista, C. L. Poh, T. Y. Seng, and G. S. Kassab. Analysis of blood flow in an out-of-plane CABG model. Am. J. Physiol. Heart Circ. Physiol. 291(1):H283–H295, 2006. https://doi.org/10.1152/ajpheart.01347.2005.

    Article  Google Scholar 

  39. Shintani, Y., K. Iino, Y. Yamamoto, H. Kato, H. Takemura, and T. Kiwata. Analysis of computational fluid dynamics and particle image velocimetry models of distal-end side-to-side and end-to-side anastomoses for coronary artery bypass grafting in a pulsatile flow. Circ. J. 82(1):110–117, 2017.

    Article  Google Scholar 

  40. Stevens, S. L., S. Wood, C. Koshiaris, K. Law, P. Glasziou, R. J. Stevens, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ 354:i4098, 2016. https://doi.org/10.1136/bmj.i4098.

    Article  Google Scholar 

  41. Su, C., D. Lee, R. Tran-Son-Tay, and W. Shyy. Fluid flow structure in arterial bypass anastomosis. J. Biomech. Eng. 127:611, 2005.

    Article  Google Scholar 

  42. Taggart, D. P. Current status of arterial grafts for coronary artery bypass grafting. Ann. Cardiothorac. Surg. 2(4):427–430, 2013. https://doi.org/10.3978/j.issn.2225-319X.2013.07.21.

    Article  Google Scholar 

  43. Totorean, A., Bernad, S,. Hudrea, I., Susan-Resiga, R., editors. Competitive flow and anastomosis angle influence on bypass hemodynamics in unsteady flow conditions. AIP Conference Proceedings. AIP Publishing LLC, 2017.

  44. Tsukui, H., M. Shinke, Y. K. Park, and K. Yamazaki. Longer coronary anastomosis provides lower energy loss in coronary artery bypass grafting. Heart Vessels 32(1):83–89, 2017. https://doi.org/10.1007/s00380-016-0880-4.

    Article  Google Scholar 

  45. Wang, W., B. Mao, H. Wang, X. Geng, X. Zhao, H. Zhang, et al. Hemodynamic analysis of sequential graft from right coronary system to left coronary system. Biomed. Eng. 15(2):132, 2016. https://doi.org/10.1186/s12938-016-0259-x.

    Article  Google Scholar 

Download references

Acknowledgments

Funding is provided by grants from the European Research Council (ERC) Proof of Concept Grant KidsSurgicalPlan and the TUBITAK 1003 priority-research Program Grant 115E690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerem Pekkan.

Additional information

Associate Editor David Steinman oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 1240 kb)

Supplementary material 2 (MP4 1474 kb)

Supplementary material 3 (MP4 1320 kb)

Supplementary material 4 (MP4 1641 kb)

Supplementary material 5 (MP4 1124 kb)

Supplementary material 6 (MP4 1447 kb)

Supplementary material 7 (MP4 1259 kb)

Supplementary material 8 (MP4 1340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeimoghaddam, M., Oguz, G.N., Ates, M.S. et al. Patient-Specific Hemodynamics of New Coronary Artery Bypass Configurations. Cardiovasc Eng Tech 11, 663–678 (2020). https://doi.org/10.1007/s13239-020-00493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00493-9

Keywords

Navigation