Skip to main content

Advertisement

Log in

Thermal Characteristics, Kinetics, and Volatility of Co-Combustion of Sewage Sludge and Rice Husk

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This work focused on the evaluation of co-combustion of sewage sludge (SS) and rice husk (RH) using thermogravimetric–Fourier transform infrared spectrometry method (TG–FTIR). The thermal behavior was assessed through the combustion characteristic, interaction, kinetics, and gaseous product characteristics. The (co-)combustion process was divided into three stages. Index D exponentially increased as RH blending ratio increased and index S also increased from 10 to 70% RH blending ratio, indicating that the combustion behavior was improved by the RH blending. The activation energy was evaluated by two model-free iso-conversional methods: Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The minimum value of average activation energy among blends was obtained at sample with 30% RH blending, which was 103.31 kJ/mol by FWO and 97.81 kJ/mol by KAS. Several typical gaseous products and functional groups were detected by FTIR spectrum. The results showed that CO2 was the main volatile and its yield increased with the RH blending ratio.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SS:

Sewage sludge

RH:

Rice husk

S90R10:

Sample of 90 wt.% sewage sludge and 10 wt.% rice husk

S70R30:

Sample of 70 wt.% sewage sludge and 30 wt.% rice husk

S50R50:

Sample of 50 wt.% sewage sludge and 50 wt.% rice husk

S30R70:

Sample of 30 wt.% sewage sludge and 70 wt.% rice husk

S10R90:

Sample of 10 wt.% sewage sludge and 90 wt.% rice husk

PRH:

The proportion of rice husk in blends

FWO:

Flynn–Wall–Ozawa

KAS:

Kissinger–Akahira–Sunose

TG:

Thermogravimetry

DTG:

Derivative thermogravimetry

FTIR:

Fourier-transform infrared spectrometry

XRF:

X-Ray fluorescence spectrometer

D :

Volatile combustion characteristic index

S :

Comprehensive combustion characteristic index

References

  1. Meng K, Fu W, Lei Y, Zhao D, Lin Q, Wang G (2019) Study on micro-explosion intensity characteristics of biodiesel, RP-3 and ethanol mixed droplets. Fuel 256:115942. https://doi.org/10.1016/j.fuel.2019.115942

    Article  CAS  Google Scholar 

  2. Meng K, Bao L, Shi Y, Han K, Lin Q, Wang C (2020) Experimental investigation on ignition, combustion and micro-explosion of RP-3, biodiesel and ethanol blended droplets. Appl Therm Eng 178:115649. https://doi.org/10.1016/j.applthermaleng.2020.115649

    Article  CAS  Google Scholar 

  3. Huang L, Xie C, Liu J, Zhang X, Chang KL, Kuo J, Sun J, Xie W, Zheng L, Sun S, Buyukada M, Evrendilek F (2018) Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresour Technol 247:217–225. https://doi.org/10.1016/j.biortech.2017.09.039

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Huang L, Xie W, Kuo J, Buyukada M, Evrendilek F (2019) Characterizing and optimizing (co-)pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates. Bioresour Technol 277:104–116. https://doi.org/10.1016/j.biortech.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  5. Hameed Z, Naqvi SR, Naqvi M, Ali I, Taqvi SAA, Gao N, Hussain SA, Hussain S (2020) A comprehensive review on thermal coconversion of biomass, sludge, coal, and their blends using thermogravimetric analysis. J Chemother 2020:5024369–5024323. https://doi.org/10.1155/2020/5024369

    Article  CAS  Google Scholar 

  6. Huang M, Chen L, Chen D, Zhou S (2011) Characteristics and aluminum reuse of textile sludge incineration residues after acidification. J Environ Sci 23(12):1999–2004. https://doi.org/10.1016/S1001-0742(10)60662-6

    Article  CAS  Google Scholar 

  7. Naqvi SR, Tariq R, Hameed Z, Ali I, Taqvi SA, Naqvi M, Niazi MBK, Noor T, Farooq W (2018) Pyrolysis of high-ash sewage sludge: thermo-kinetic study using TGA and artificial neural networks. Fuel 233:529–538. https://doi.org/10.1016/j.fuel.2018.06.089

    Article  CAS  Google Scholar 

  8. Naqvi SR, Tariq R, Hameed Z, Ali I, Naqvi M, Chen WH, Ceylan S, Rashid H, Ahmad J, Taqvi SA, Shahbaz M (2019) Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats–Redfern method. Renew Energy 131:854–860. https://doi.org/10.1016/j.renene.2018.07.094

    Article  CAS  Google Scholar 

  9. Vamvuka D, Zografos D (2004) Predicting the behaviour of ash from agricultural wastes during combustion. Fuel 83:2051–2057. https://doi.org/10.1016/j.fuel.2004.04.012

    Article  CAS  Google Scholar 

  10. Niu Y, Du W, Tan H et al (2013) Further study on biomass ash characteristics at elevated ashing temperatures: the evolution of K, Cl, S and the ash fusion characteristics. Bioresour Technol 129:642–645. https://doi.org/10.1016/j.biortech.2012.12.065

    Article  CAS  PubMed  Google Scholar 

  11. Niu Y, Tan H, Hui S (2016) Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog Energy Combust Sci 52:1–61. https://doi.org/10.1016/j.pecs.2015.09.003

    Article  Google Scholar 

  12. Chen J, Liu J, He Y, Huang L, Sun S, Sun J, Chang KL, Kuo J, Huang S, Ning X (2017) Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresour Technol 225:234–245. https://doi.org/10.1016/j.biortech.2016.11.069

    Article  CAS  PubMed  Google Scholar 

  13. Hameed Z, Aman Z, Naqvi SR, Tariq R, Ali I, Makki AA (2018) Kinetic and thermodynamic analyses of sugar cane bagasse and sewage sludge co-pyrolysis process. Energy Fuel 32:9551–9558. https://doi.org/10.1021/acs.energyfuels.8b01972

    Article  CAS  Google Scholar 

  14. Yuan R, Yu S, Shen Y (2019) Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Manag 87:86–96. https://doi.org/10.1016/j.wasman.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  15. Zhang R, Lei K, Ye BQ, Cao J, Liu D (2018) Effects of alkali and alkaline earth metal species on the combustion characteristics of single particles from pine sawdust and bituminous coal. Bioresour Technol 268:278–285. https://doi.org/10.1016/j.biortech.2018.07.145

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Duan F, Huang Y (2015) Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation. Bioresour Technol 181:62–71. https://doi.org/10.1016/j.biortech.2015.01.041

    Article  CAS  PubMed  Google Scholar 

  17. Xue Z, Zhong Z, Zhang B (2019) Experimental studies on co-combustion of sludge and wheat straw. Catalysts 9(2):182. https://doi.org/10.3390/catal9020182

    Article  CAS  Google Scholar 

  18. Peng X, Ma X, Xu Z (2015) Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge. Bioresour Technol 180:288–295. https://doi.org/10.1016/j.biortech.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  19. Naqvi SR, Hameed Z, Tariq R, Taqvi SA, Ali I, Niazi MBK, Noor T, Hussain A, Iqbal N, Shahbaz M (2019) Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag 85:131–140. https://doi.org/10.1016/j.wasman.2018.12.031

    Article  CAS  PubMed  Google Scholar 

  20. Cai Z, Ma X, Fang S, Yu Z, Lin Y (2016) Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Appl Therm Eng 106:938–943. https://doi.org/10.1016/j.applthermaleng.2016.06.088

    Article  CAS  Google Scholar 

  21. Wang C, Wang X, Jiang X, Li F, Lei Y, Lin Q (2019) The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw. Fuel Process Technol 189:1–14. https://doi.org/10.1016/j.fuproc.2019.02.024

    Article  CAS  Google Scholar 

  22. Cai H, Liu J, Kuo J, Buyukada M, Evrendilek F (2019) Thermal characteristics, kinetics, gas emissions and thermodynamic simulations of (co-)combustions of textile dyeing sludge and waste tea. J Clean Prod 239(1):118113. https://doi.org/10.1016/j.jclepro.2019.118113

    Article  CAS  Google Scholar 

  23. Lin Y, Liao Y, Yu Z, Fang S, Ma X (2017) The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochim Acta 653:71–78. https://doi.org/10.1016/j.tca.2017.04.003

    Article  CAS  Google Scholar 

  24. Jayaraman K, Gökalp I (2015) Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers Manag 89:83–91. https://doi.org/10.1016/j.enconman.2014.09.058

    Article  CAS  Google Scholar 

  25. Xie C, Liu J, Xie W, Kuo J, Lu X, Zhang X, He Y, Sun J, Chang K, Xie W, Liu C, Sun S, Buyukada M, Evrendilek F (2018) Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends. Renew Energy 122:55–64. https://doi.org/10.1016/j.renene.2018.01.093

    Article  CAS  Google Scholar 

  26. Raza S, Hameed Z, Tariq R et al (2019) Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag 85:131–140. https://doi.org/10.1016/j.wasman.2018.12.031

    Article  CAS  Google Scholar 

  27. Wang C, Bi H, Lin Q, Jiang X, Jiang C (2020) Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics. Renew Energy 160:1048–1066. https://doi.org/10.1016/j.renene.2020.07.046

    Article  CAS  Google Scholar 

  28. Li S, Chen X, Liu A, Wang L, Yu G (2015) Bioresource technology co-pyrolysis characteristic of biomass and bituminous coal. Bioresour Technol 179:414–420. https://doi.org/10.1016/j.biortech.2014.12.025

    Article  CAS  PubMed  Google Scholar 

  29. Duan F, Chyang CS, Lin CW, Tso J (2013) Experimental study on rice husk combustion in a vortexing fluidized-bed with flue gas recirculation (FGR). Bioresour Technol 134:204–211. https://doi.org/10.1016/j.biortech.2013.01.125

    Article  CAS  PubMed  Google Scholar 

  30. Wu Z, Yang W, Tian X, Yang B (2017) Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass. Energy Convers Manag 135:212–225. https://doi.org/10.1016/j.enconman.2016.12.060

    Article  CAS  Google Scholar 

  31. Xu ZX, Song H, Li PJ, He ZX, Wang Q, Wang K, Duan PG (2020) Hydrothermal carbonization of sewage sludge: effect of aqueous phase recycling. Chem Eng J 387(1):123410. https://doi.org/10.1016/j.cej.2019.123410

    Article  CAS  Google Scholar 

  32. Zhang J, Liu J, Evrendilek F, Zhang X, Buyukada M (2019) TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: kinetic, thermodynamic, and machine-learning models. Energy Convers Manag 195:346–359. https://doi.org/10.1016/j.enconman.2019.05.019

    Article  CAS  Google Scholar 

  33. Bi H, Wang C, Jiang X, Jiang C, Bao L, Lin Q (2021) Thermodynamics, kinetics, gas emissions and artificial neural network modeling of co-pyrolysis of sewage sludge and peanut shell. Fuel 284:118988. https://doi.org/10.1016/j.fuel.2020.118988

    Article  CAS  Google Scholar 

  34. Jiang C, Lin Q, Wang C, Jiang X, Bi H, Bao L (2020) Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions. Energy 2020:117143. https://doi.org/10.1016/j.energy.2020.117143

    Article  CAS  Google Scholar 

  35. Liu C, Liu J, Evrendilek F, Xie W, Kuo J, Buyukada M (2020) Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS. Renew Energy 148:1074–1093. https://doi.org/10.1016/j.renene.2019.09.133

    Article  CAS  Google Scholar 

  36. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci V(15):285–292. https://doi.org/10.1002/app.1961.070051506

    Article  Google Scholar 

  37. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  38. Hernández AB, Okonta F, Freeman N (2017) Thermal decomposition of sewage sludge under N2, CO2 and air: gas characterization and kinetic analysis. J Environ Manag 196:560–568. https://doi.org/10.1016/j.jenvman.2017.03.036

    Article  CAS  Google Scholar 

  39. Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J Anal Appl Pyrolysis 78(2):265–271. https://doi.org/10.1016/j.jaap.2006.08.002

    Article  CAS  Google Scholar 

  40. Di Blasi CD, Signorelli G, Portoricco G (1999) Countercurrent fixed-bed gasification of biomass at laboratory scale. Ind Eng Chem Res 38(7):2571–2581. https://doi.org/10.1021/ie980753i

    Article  Google Scholar 

  41. Mansaray KG, Ghaly AE (1998) Thermal degradation of rice husks in nitrogen atmosphere. Bioresour Technol 65(1–2):13–20. https://doi.org/10.1016/S0960-8524(98)00031-5

    Article  CAS  Google Scholar 

  42. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  43. Brebu M, Vasile C (2010) Thermal degradation of lignin – a review 44(9):353–363. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.6299&rep=rep1&type=pdf

  44. Zhang J, Chen T, Wu J, Wu J (2014) Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N2 and CO2 atmosphere. Bioresour Technol 166:87–95. https://doi.org/10.1016/j.biortech.2014.05.030

    Article  CAS  PubMed  Google Scholar 

  45. Parshetti GK, Quek A, Betha R, Balasubramanian R (2014) TGA–FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal. Fuel Process Technol 118:228–234. https://doi.org/10.1016/j.fuproc.2013.09.010

    Article  CAS  Google Scholar 

  46. Hu S, Ma X, Lin Y, Yu Z, Fang S (2015) Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste. Energy Convers Manag 99:112–118. https://doi.org/10.1016/j.enconman.2015.04.026

    Article  Google Scholar 

  47. Lin Y, Chen Z, Dai M, Fang S, Liao Y, Yu Z, Ma X (2018) Bioresource technology co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM). Bioresour Technol 259:173–180. https://doi.org/10.1016/j.biortech.2018.03.036

    Article  CAS  PubMed  Google Scholar 

  48. Zou C, Wen L, Zhang S, Bai C, Yin G (2014) Evaluation of catalytic combustion of pulverized coal for use in pulverized coal injection (PCI) and its influence on properties of unburnt chars. Fuel Process Technol 119:136–145. https://doi.org/10.1016/j.fuproc.2013.10.022

    Article  CAS  Google Scholar 

  49. Gong X, Guo Z, Wang Z (2010) Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis ( DTA ). Energy 35:506–511. https://doi.org/10.1016/j.energy.2009.10.017

    Article  CAS  Google Scholar 

  50. Li XG, Ma BG, Xu L, Luo ZT, Wang K (2007) Catalytic effect of metallic oxides on combustion behavior of high ash coal. Energy Fuel 21(5):2669–2672. https://doi.org/10.1021/ef070054v

    Article  CAS  Google Scholar 

  51. Cheng J, Zhou F, Xuan X, Liu J, Zhou J, Cen K (2016) Cascade chain catalysis of coal combustion by Na–Fe–Ca composite promoters from industrial wastes. Fuel 181(1):820–826. https://doi.org/10.1016/j.fuel.2016.05.064

    Article  CAS  Google Scholar 

  52. Cheng J, Zhou F, Xuan X, Liu J, Zhou J, Cen K (2017) Comparison of the catalytic effects of eight industrial wastes rich in Na, Fe, Ca and Al on anthracite coal combustion. Fuel 187(1):398–402. https://doi.org/10.1016/j.fuel.2016.09.083

    Article  CAS  Google Scholar 

  53. Edreis EMA, Luo G, Li A, Chao C, Hu H, Zhang S, Gui B, Xiao L, Xu K, Zhang P, Yao H (2013) CO2 CO-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique. Bioresour Technol 136:595–603. https://doi.org/10.1016/j.biortech.2013.02.112

    Article  CAS  PubMed  Google Scholar 

  54. Lin Y, Liao Y, Yu Z, Fang S, Ma X (2017) A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Convers Manag 151:190–198. https://doi.org/10.1016/j.enconman.2017.08.062

    Article  CAS  Google Scholar 

  55. Lin Y, Ma X, Ning X, Yu Z (2015) TGA-FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes. Energy Convers Manag 89:727–734. https://doi.org/10.1016/j.enconman.2014.10.042

    Article  CAS  Google Scholar 

  56. Yang J, Chen H, Zhao W, Zhou J (2016) Combustion kinetics and emission characteristics of peat by using TG-FTIR technique. J Therm Anal Calorim 124:519–528. https://doi.org/10.1007/s10973-015-5168-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (no. 51376171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhao Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Bi, H., Lin, Q. et al. Thermal Characteristics, Kinetics, and Volatility of Co-Combustion of Sewage Sludge and Rice Husk. Bioenerg. Res. 14, 1014–1024 (2021). https://doi.org/10.1007/s12155-020-10203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10203-x

Keywords

Navigation