Skip to main content

Advertisement

Log in

Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

A Correction to this article was published on 01 December 2020

This article has been updated

Abstract

Previous studies have revealed that laser power and energy density are significant factors affecting the quality of parts manufactured by selective laser melting (SLM). The normalized equivalent density E0* and dimensionless laser power q*, which can be regarded as a progress on the understanding of the corresponding dimensional quantities, are adopted in this study to examine the defects, melt pool shape, and primary dendrite spacing of the SLM-manufactured 316L stainless steel, because it reflects the combined effect of process parameters and material features. It is found that the number of large defects decreases with increasing E0* due to enough heat input during the SLM process, but it will show an increasing trend when excessive heat input (i.e., utilizing a high E0*) is imported into the powder bed. The q* plays an important role in controlling maximum temperature rising in the SLM process, and in turn, it affects the number of large defects. A large q* value results in a low value of absolute frequency of large defects, whereas a maximum value of absolute frequency of large defects is achieved at a low q* even if E0* is very high. The density of the built parts is greater at a higher q* when E0* remains constant. Increasing the melt pool depth at relatively low value of E0* enhances the relative density of the parts. A narrow, deep melt pool can be easily generated at a high q* when E0* is sufficiently high, but it may increase melt pool instability and cause keyhole defects. It is revealed that a low E0* can lead to a high cooling rate, which results in a refined primary dendrite spacing. Relatively low E0* is emphasized in selecting the process parameters for the tensile test sample fabrication. It shows that excellent tensile properties, namely ultimate tensile strength, yield strength, and elongation to failure of 773 MPa, 584 MPa, and 46%, respectively, can be achieved at a relatively low E0* without heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. I. Yadroitsev, Dissertation (Central University of Technology, Free State, 2009)

    Google Scholar 

  2. C. Yu, Y. Zhong, P. Zhang, Z. Zhang, C. Zhao, Z. Zhang, Z. Shen, W. Liu, Acta Metall. Sin. Engl. Lett. 33, 539 (2020)

    CAS  Google Scholar 

  3. Y. Zhong, L.F. Liu, S. Wikman, D.Q. Cui, Z.J. Shen, J. Nucl. Mater. 470, 170 (2016)

    CAS  Google Scholar 

  4. C. Qiu, M. Al Kindi, A.S. Aladawi, I. Al Hatmi, Sci. Rep. 8, 7785 (2018)

    Google Scholar 

  5. L.Z. Wang, W.H. Wei, Acta Metall. Sin. Engl. Lett. 31, 807 (2018)

    CAS  Google Scholar 

  6. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365 (2017)

    CAS  Google Scholar 

  7. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576, 91 (2019)

    CAS  Google Scholar 

  8. M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, W.R. Moore, T.A. Newman, Metall. Mater. Trans. A 49, 3011 (2018)

    CAS  Google Scholar 

  9. Z.J. Sun, X.P. Tan, S.B. Tor, C.K. Chua, NPG. Asia Mater. 10, 127 (2018)

    CAS  Google Scholar 

  10. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17, 63 (2018)

    CAS  Google Scholar 

  11. L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today 21, 354 (2018)

    CAS  Google Scholar 

  12. W. Yang, Y. Tarng, J. Mater. Process. Technol. 84, 122 (1998)

    Google Scholar 

  13. T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, J. Appl. Phys. 121, 064904 (2017)

    Google Scholar 

  14. J.C. Ion, H.R. Shercliff, M.F. Ashby, Acta Metall. Mater. 40, 1539 (1992)

    CAS  Google Scholar 

  15. M. Thomas, G.J. Baxter, I. Todd, Acta Mater. 108, 26 (2016)

    CAS  Google Scholar 

  16. H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, Y.L. Fen, S.W. Li, H. Gao, H.J. Xu, Opt. Laser. Technol. 119, 105592 (2019)

    CAS  Google Scholar 

  17. K. Darvish, Z.W. Chen, T. Pasang, Mater. Des. 112, 357 (2016)

    CAS  Google Scholar 

  18. Z. Li, T. Voisin, J.T. McKeown, J.C. Ye, T. Braun, C. Kamath, W.E. King, Y.M. Wang, Int. J. Plast. 120, 395 (2019)

    CAS  Google Scholar 

  19. H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cissé, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, Science 366, 1116 (2019)

    CAS  Google Scholar 

  20. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, J. Mater. Process. Technol. 211, 113 (2011)

    CAS  Google Scholar 

  21. M. Ma, Z. Wang, X. Zeng, Mater. Sci. Eng. A 685, 265 (2017)

    CAS  Google Scholar 

  22. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)

    CAS  Google Scholar 

  23. T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018)

    CAS  Google Scholar 

  24. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014)

    Google Scholar 

  25. C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, A. Sisto, Int. J. Adv. Manuf. Technol. 74, 65 (2014)

    Google Scholar 

  26. A.B. Spierings, M. Schneider, R. Eggenberger, Rapid Prototyp. J. 17, 380 (2011)

    Google Scholar 

  27. Z.J. Sun, X.P. Tan, S.B. Tor, W.Y. Yeong, Mater. Des. 104, 197 (2016)

    CAS  Google Scholar 

  28. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, Acta Mater. 58, 3303 (2010)

    CAS  Google Scholar 

  29. J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mater. Sci. Eng. A 696, 113 (2017)

    CAS  Google Scholar 

  30. C.L. Qiu, N.J.E. Adkins, M.M. Attallah, Acta Mater. 103, 382 (2016)

    CAS  Google Scholar 

  31. Y.M. Wang, C. Kamath, T. Voisin, Z. Li, Rapid. Prototyp. J. 24, 1469 (2018)

    Google Scholar 

  32. C.L. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, Acta Mater. 96, 72 (2015)

    CAS  Google Scholar 

  33. J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, Int. J. Adv. Manuf. Technol. 76, 869 (2015)

    Google Scholar 

  34. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze, Metall. Mater. Trans. B 44, 794 (2013)

    CAS  Google Scholar 

  35. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett, Science 363, 849 (2019)

    CAS  Google Scholar 

  36. L. Cla, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, Nat. Commun. 9, 1355 (2018)

    Google Scholar 

  37. T. Mukherjee, J.S. Zuback, A. De, T. DebRoy, Sci. Rep. 6, 19717 (2016)

    CAS  Google Scholar 

  38. I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 253, 8064 (2007)

    CAS  Google Scholar 

  39. D. Wang, C.H. Song, Y.Q. Yang, Y.C. Bai, Mater. Des. 100, 291 (2016)

    CAS  Google Scholar 

  40. M. Ma, Z. Wang, G. Ming, X. Zeng, J. Mater. Process. Technol. 215, 142 (2015)

    CAS  Google Scholar 

  41. S. Katayama, A. Matsunawa, in International Congress on Applications of Lasers & Electro-Optics, vol. 44 (Laser Institute of America, New York, 1984), p. 60

  42. K. Saeidi, X. Gao, F. Lofaj, L. Kvetková, Z.J. Shen, J. Alloys Compd. 633, 463 (2015)

    CAS  Google Scholar 

  43. A.T. Sidambe, Y. Tian, P.B. Prangnell, P. Fox, Int. J. Refract. Met. Hard Mat. 78, 254 (2019)

    CAS  Google Scholar 

  44. D. Bäuerle, Laser Processing and Chemistry, 4th edn. (Springer, Berlin, 2011)

    Google Scholar 

  45. R. Casati, J. Lemke, M. Vedani, J. Mater. Sci. Technol. 32, 738 (2016)

    CAS  Google Scholar 

  46. K. Saeidi, L. Kvetkova, F. Lofajc, Z.J. Shen, RSC Adv. 5, 20747 (2015)

    CAS  Google Scholar 

  47. C. Elangeswaran, A. Cutolo, G.K. Muralidharan, C. de Formanoir, F. Berto, K. Vanmeensel, B. Van Hooreweder, Int. J. Fatigue 123, 31 (2019)

    CAS  Google Scholar 

  48. A. Riemer, S. Leuders, M. Thöne, H. Richard, T. Tröster, T. Niendorf, Eng. Fract. Mech. 120, 15 (2014)

    Google Scholar 

  49. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Mater. Sci. Eng. A 718, 64 (2018)

    CAS  Google Scholar 

  50. ASM International Handbook Committee, ed. by S.D. Washko and G. Aggen. Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, 10th Edition (USA, 1990), p. 2049

  51. K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Mater. Sci. Eng. A 625, 221 (2015)

    CAS  Google Scholar 

  52. T. Voisin, N.P. Calta, S.A. Khairallah, J.B. Forien, L. Balogh, R.W. Cunningham, A.D. Rollett, Y.M. Wang, Mater. Des. 158, 113 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant No. 11772344) and the National Key R&D Program of China (Project No. 2016YFB1100700). The authors would like to thank PhD candidate, Yan-Sen Li, for the experimental assistance concerning scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Yang Li or Qi-Sheng Chen.

Additional information

Available online at https://link.springer.com/journal/40195.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, HZ., Li, ZY., Feng, T. et al. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting. Acta Metall. Sin. (Engl. Lett.) 34, 495–510 (2021). https://doi.org/10.1007/s40195-020-01143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01143-8

Keywords

Navigation