Skip to main content
Log in

Effect of solid solution addition on the dislocation emission in aluminum alloys

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Solid solution strengthening plays a key role in the strength increasing of alloying metals, due to that a solid solution of alloying element causes lattice distortion to a certain extent. In the paper, the effect of solid solution magnesium additions on the edge dislocation emission from a blunted crack tip in aluminum alloys is investigated. The critical stress intensity factor for the dislocation emission considering different magnesium solute concentrations is analyzed under the mode I and mode II loading conditions. The results show that within a certain concentration range the magnesium solute concentration does affect dislocation emission, although the influence appears not very strong. The critical stress intensity factor for the dislocation emission decreases with the increment of solute concentration. This means that relatively increasing the solute concentration can promote the dislocation emission, cause effective blunting of cracks and thus improve the fracture toughness of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rice, J.R., Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73–97 (1974)

    Article  Google Scholar 

  2. Huang, C.C., Yu, C.C., Lee, S.: The behavior of screw dislocations dynamically emitted from the tip of a surface crack during loading and unloading. J. Mater. Res. 10, 183–189 (1995)

    Article  Google Scholar 

  3. Wang, T.C.: Dislocation nucleation and emission from crack tip. Int. J. Fract. 69, 295–306 (1995)

    Article  Google Scholar 

  4. Tsai, Y.Z., Lee, S.: Dynamic emission of screw dislocations from a propagating crack tip. J. Appl. Phys. 81, 2089–2093 (1997)

    Article  Google Scholar 

  5. Chen, J.H., Wang, Q., Wang, G.Z., Li, Z.: Fracture behavior at crack tip—a new framework for cleavage mechanism of steel. Acta Mater. 51, 1841–1855 (2003)

    Article  Google Scholar 

  6. Lee, S.: The image force on the screw dislocation around a crack of finite size. Eng. Fract. Mech. 27, 539–545 (1987)

    Article  Google Scholar 

  7. Chen, B.T., Zhang, T.Y., Lee, S.: Interaction of an edge dislocation with an elliptical hole in a rectilinearly anisotropic body. Mech. Mater. 31, 71–93 (1999)

    Article  Google Scholar 

  8. Fang, Q.H., Liu, Y., Liu, Y.W., Huang, B.Y.: Dislocation emission from an elliptically blunted crack tip with surface effects. Phys. B 404, 3421–3424 (2009)

    Article  Google Scholar 

  9. Zeng, X., Fang, Q.H., Liu, Y.: Effect of thermal activation energy on dislocation emission from an elliptically blunted crack tip. Phys. B 447, 15–18 (2014)

    Article  Google Scholar 

  10. Tan, F.S., Fang, Q.H., Li, J., Feng, H.: Enhanced nanotwinning by special grain growth. J. Mater. Sci. 55, 3618–3628 (2020)

    Article  Google Scholar 

  11. Yu, M., Peng, X.H., Wen, P.H.: Effect of cooperative grain boundary sliding and migration on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials. Acta Mech. 229, 3901–3913 (2018)

    Article  MathSciNet  Google Scholar 

  12. Colin, J., Bonneville, J., Grilhé, J.: Dislocation-based description of the sliding of a free-surface emerging grain boundary. Acta Mech. 229, 3215–3222 (2018)

    Article  MathSciNet  Google Scholar 

  13. Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech. 225, 2005–2019 (2014)

    Article  MathSciNet  Google Scholar 

  14. Colin, J.: Elastic interaction between dislocations and a cavity embedded in a biaxially stressed solid. Acta Mech. 229, 4945–4952 (2018)

    Article  MathSciNet  Google Scholar 

  15. He, T.W., Xiao, W.S., Zhang, Y., Zhu, H.P.: Effect of special rotational deformation on the dislocation emission from a branched crack tip in deformed nanocrystalline materials. Acta Mech. 228, 823–836 (2017)

    Article  MathSciNet  Google Scholar 

  16. Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of special rotational deformation on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials. Acta Mech. 227, 2011–2024 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fang, Q.H., Feng, H., Liu, Y.W., Lin, S., Zhang, N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 49, 1406–1412 (2012)

    Article  Google Scholar 

  18. Uesugi, T., Higashi, K.: First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys. Comput. Mater. Sci. 67, 1–10 (2013)

    Article  Google Scholar 

  19. Borovikov, V., Mendelev, M.I., King, A.H.: Solute effects on interfacial dislocation emission in nanomaterials: nucleation site competition and neutralization. Scr. Mater. 154, 12–15 (2018)

    Article  Google Scholar 

  20. Fleischer, R.L.: The Strengthening of Metals. Reinhold Publishing, New York (1964)

    Google Scholar 

  21. Labusch, R.: A statistical theory of solid solution hardening. Phys. Stat. Sol. B 41, 659–669 (1970)

    Article  Google Scholar 

  22. Suzuki, H.: The yield strength of binary alloys, pp. 361–390. Dislocations and mechanical properties of crystals, New York, (1957)

  23. Leyson, G.P.M., Curtin, W.A., Hector, L.G., Woodward, C.F.: Quantitative prediction of solute strengthening in aluminium alloys. Nat. Mater. 9, 750–755 (2010)

    Article  Google Scholar 

  24. Tapasa, K., Bacon, D.J., Osetsky, Y.N.: Simulation of dislocation glide in dilute Fe–Cu alloys. Mater. Sci. Eng. A 400, 109–113 (2005)

    Article  Google Scholar 

  25. Liu, Y.W., Fang, Q.H., Jiang, C.P.: A wedge disclination dipole interacting with a circular inclusion. Phys. Status Solidi A 203, 443–458 (2006)

    Article  Google Scholar 

  26. Fang, Q.H., Liu, Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54, 4213–4220 (2006)

    Article  Google Scholar 

  27. Zhou, K., Wu, M.S.: Exact solutions for periodic interfacial wedge disclination dipoles in a hexagonal bicrystal. Math. Mech. Solids 11, 337–360 (2006)

    Article  MathSciNet  Google Scholar 

  28. Luo, J., Zhou, K., Xiao, Z.M.: Stress investigation on a Griffith crack initiated from an eccentric disclination in a cylinder. Acta Mech. 202, 65 (2009)

    Article  Google Scholar 

  29. Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 21, 271–292 (2010)

    Article  Google Scholar 

  30. Zhou, K., Wu, M.S.: Stress field of a disclination dipole in hcp bicrystal with imperfect interface. Int. J. Eng. Sci. 48, 237–252 (2010)

    Article  Google Scholar 

  31. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Berlin (1977)

    Book  Google Scholar 

  32. Stagni, L.: Edge dislocation near an elliptic inhomogeneity with either an adhering or a slipping interface—A comparative study. Phil. Mag. A 68, 49–57 (1993)

    Article  Google Scholar 

  33. Hull, D., Bacon, D.J.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  34. Kato, M.: Introduction to the Theory of Dislocations. Shokabo, Tokyo (1999)

    Google Scholar 

  35. Cottrell, A.H.: Report of the Conference on Strength of Solids. Physical Society, College Park (1948)

    Google Scholar 

  36. Sherby, O.D., Anderson, R.A., Dorn, J.E.: The effect of alloying elements on the elevated temperature plastic properties of alpha solid solutions of aluminum. Trans. Metall. 191, 643–652 (1951)

    Google Scholar 

  37. Creager, M., Paris, P.C.: Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fract. Mech. 3, 247–252 (1967)

    Article  Google Scholar 

  38. Hirth, J.P., Lothe, J., Mura, T.: Theory of Dislocations. New York, (1983)

Download references

Acknowledgements

The authors would like to deeply appreciate the support from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004), the National Natural Science Foundation of China (11772122, 11572118, 11602080 and 51871092), Hunan Provincial Natural Science Foundation of China (2018JJ3026), the National Key Research and Development Program of China (2016YFB0700300) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Li, J., Fang, Q. et al. Effect of solid solution addition on the dislocation emission in aluminum alloys. Acta Mech 231, 4537–4545 (2020). https://doi.org/10.1007/s00707-020-02777-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02777-6

Navigation