Skip to main content
Log in

Electric-current-induced thermal stress around a non-circular rigid inclusion in a two-dimensional nonlinear thermoelectric material

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The plane problem of a non-circular rigid inhomogeneity embedded in an infinite thermoelectric matrix under a uniform remote electric current is investigated based on the complex variable method. The inclusion is assumed to be electrically insulated and thermally conductive. Techniques of Faber and Fourier series are used to solve the corresponding boundary value problems. The obtained results show that the shape, bluntness and heat conductivity of the inclusion have a significant effect on the interfacial thermal stress distribution induced by the external electric current. In addition, the Von Mises stress concentration around a non-circular inclusion could be lower than that around a circular inclusion by designing the shape and orientation of the inclusion properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999)

    Article  Google Scholar 

  2. Zhang, X., Zhao, L.D.: Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1(2), 92–105 (2015)

    MathSciNet  Google Scholar 

  3. Tritt, T.M., Subramanian, M.A.: Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31(3), 188–198 (2006)

    Article  Google Scholar 

  4. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  Google Scholar 

  5. He, W., Zhang, G., Zhang, X., Ji, J., Li, G., Zhao, X.: Recent development and application of thermoelectric generator and cooler. Appl. Energy 143, 1–25 (2015)

    Article  Google Scholar 

  6. He, J., Tritt, T.M.: Advances in thermoelectric materials research: looking back and moving forward. Science 357(6358), eaak9997 (2017)

    Article  Google Scholar 

  7. Kim, G.H., Shao, L., Zhang, K., Pipe, K.P.: Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12(8), 719 (2013)

    Article  Google Scholar 

  8. Meng, C., Liu, C., Fan, S.: A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv. Mater. 22(4), 535–539 (2010)

    Article  Google Scholar 

  9. Li, G., An, Q., Li, W., Goddard III, W.A., Zhai, P., Zhang, Q., Snyder, G.J.: Brittle failure mechanism in thermoelectric skutterudite CoSb3. Chem. Mater. 27(18), 6329–6336 (2015)

    Article  Google Scholar 

  10. Jafari, M., Nazari, M.B., Nasabe, A.T.: Study of the effective parameters on stress distribution around triangular hole in metallic plates subjected to uniform heat flux. J. Therm. Stresses 39(3), 333–344 (2016)

    Article  Google Scholar 

  11. Dai, M., Sun, H.: Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions. Int. J. Mech. Sci. 75, 337–344 (2013)

    Article  Google Scholar 

  12. Wang, X., Shen, Y.P.: A solution of the elliptic piezoelectric inclusion problem under uniform heat flux. Int. J. Solids Struct. 38(15), 2503–2516 (2001)

    Article  MATH  Google Scholar 

  13. Yang, Q.Q., Gao, C.F.: Non-axisymmetric thermal stress of a functionally graded coated circular inclusion in an infinite matrix. Mech. Res. Commun. 50, 27–32 (2013)

    Article  Google Scholar 

  14. Wang, P., Wang, B.L., Wang, K.F., Hirakata, H., Zhang, C.: Analysis of three-dimensional ellipsoidal inclusions in thermoelectric solids. Int. J. Eng. Sci. 142, 158–169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dai, M., Gao, C.F.: Perturbation solution of two arbitrarily-shaped holes in a piezoelectric solid. Int. J. Mech. Sci. 88, 37–45 (2014)

    Article  Google Scholar 

  16. Pérez-Aparicio, J.L., Taylor, R.L., Gavela, D.: Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput. Mech. 40(1), 35–45 (2007)

    Article  MATH  Google Scholar 

  17. Wang, B.L.: A finite element computational scheme for transient and nonlinear coupling thermoelectric fields and the associated thermal stresses in thermoelectric materials. Appl. Therm. Eng. 110, 136–143 (2017)

    Article  Google Scholar 

  18. Yu, C.B., Zou, D.F., Li, Y.H., Yang, H.B., Gao, C.F.: An arc-shaped crack in nonlinear fully coupled thermoelectric materials. Acta Mech. 229(5), 1989–2008 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, H.P., Gao, C.F., Li, J.: Two-dimensional problem of a crack in thermoelectric materials. J. Therm. Stresses 38(3), 325–337 (2015)

    Article  Google Scholar 

  20. Zhang, A.B., Wang, B.L.: Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials. Eng. Fract. Mech. 151, 11–21 (2016)

    Article  Google Scholar 

  21. Wang, P., Wang, B.L.: Thermoelectric fields and associated thermal stresses for an inclined elliptic hole in thermoelectric materials. Int. J. Eng. Sci. 119, 93–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, C.B., Yang, H.B., Song, K., Gao, C.F.: Stress concentration around an arbitrarily-shaped hole in nonlinear fully coupled thermoelectric materials. J. Mech. Mater. Struct. 14(2), 259–276 (2019)

    Article  MathSciNet  Google Scholar 

  23. Bahk, J., Fang, H., Yazawa, K., Shakouri, A.: Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3(40), 10362–10374 (2015)

    Article  Google Scholar 

  24. Zhang, A.B., Wang, B.L., Wang, J., Du, K.: Two-dimensional problem of thermoelectric materials with an elliptic hole or a rigid inclusion. Int. J. Therm. Sci. 117, 184–195 (2017)

    Article  Google Scholar 

  25. Wang, P., Wang, B.L., Wang, K.F., Cui, Y.J.: Analysis of inclusion in thermoelectric materials: the thermal stress field and the effect of inclusion on thermoelectric properties. Compos. B Eng. 166, 130–138 (2019)

    Article  Google Scholar 

  26. Wang, X., Shen, Y.P.: Inclusions of arbitrary shape in magnetoelectroelastic composite materials. Int. J. Eng. Sci. 41(1), 85–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jafari, M., Nazari, M.B., Taherinasab, A.: Thermal stress analysis in metallic plates with a non-circular hole subjected to uniform heat flux. Eur. J. Mech. A/Solids 59, 356–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai, M., Gao, C.F., Ru, C.Q.: Surface tension-induced stress concentration around a nanosized hole of arbitrary shape in an elastic half-plane. Meccanica 49(12), 2847–2859 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dai, M., Gao, C.F., Ru, C.Q.: Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation. Proc. R. Soc. A 471(2177), 20140933 (2015)

    Article  Google Scholar 

  30. Dai, M., Gao, C.F.: Non-circular nano-inclusions with interface effects that achieve uniform internal strain fields in an elastic plane under anti-plane shear. Arch. Appl. Mech. 86(7), 1295–1309 (2016)

    Article  Google Scholar 

  31. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, 4th edn, pp. 134–147. Noordhoff, Leyden (1975)

    Google Scholar 

  32. Liu, L.P.: A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites. Int. J. Eng. Sci. 55, 35–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, A.B., Wang, B.L.: Crack tip field in thermoelectric media. Theor. Appl. Fract. Mech. 66, 33–36 (2013)

    Article  Google Scholar 

  34. Hasebe, N., Bucher, C., Heuer, R.: Analyses of thermal conduction and stress induced by electric current in an infinite thin plate with an elliptical hole. J. Therm. Stresses 32(10), 1065–1086 (2009)

    Article  Google Scholar 

  35. Gao, C.F., Noda, N.: Faber series method for two-dimensional problems of an arbitrarily shaped inclusion in piezoelectric materials. Acta Mech. 171, 1–13 (2004)

    Article  MATH  Google Scholar 

  36. Yang, W.H.: A generalized Von Mises criterion for yield and fracture. J. Appl. Mech. 47, 297 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang, J.Y., Yang, H.B.: An alternative numerical scheme for calculating the thermal stresses around an inclusion of arbitrary shape in an elastic plane under uniform remote in-plane heat flux. Acta Mech. 230(7), 2399–2412 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11902116 and 11972163) and Natural Science Foundation of Guangdong Province (No. 2017A030313014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HB., Yu, CB., Tang, JY. et al. Electric-current-induced thermal stress around a non-circular rigid inclusion in a two-dimensional nonlinear thermoelectric material. Acta Mech 231, 4603–4619 (2020). https://doi.org/10.1007/s00707-020-02770-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02770-z

Navigation