Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies

Abstract

The emerging capability to 3D print a diverse palette of functional inks will enable the mass democratization of patient-specific wearable devices and smart biomedical implants for applications such as health monitoring and regenerative biomedicines. These personalized wearables could be fabricated via ex situ printing, which involves first printing a design on a planar substrate and then deploying it to the target surface. However, this can result in a geometrically and dynamically mismatched interface between printed materials and target surfaces. In situ printing provides a potential remedy by directly printing 3D constructs on the target surfaces. This new manufacturing procedure requires the assistance of artificial intelligence (AI) to sense, adapt and predict the state of the printing environment, such as a dynamically morphing organ. In this Review, we discuss electronic and biological inks for in situ 3D printing, AI-empowered 3D-printing approaches with open-loop, closed-loop and predictive control, and recent developments in surgical robotics and AI that could be integrated in future 3D-printing approaches. We anticipate that this convergence of AI, 3D printing, functional materials and personalized biomedical devices will lead to a compelling future for smart manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of 3D-printed functional materials and devices enabled by AI-assisted fabrication technologies.
Fig. 2: Functional inks for in situ 3D printing.
Fig. 3: Conformal 3D printing on non-planar surfaces.
Fig 4: Shape programming based on target geometry.
Fig. 5: 3D printing with closed-loop correction and 3D printing on moving targets.
Fig. 6: Robotic perception for in situ 3D printing.
Fig. 7: 3D printing with surgical robots.

Similar content being viewed by others

References

  1. Valentine, A. D. et al. Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017).

    Article  CAS  Google Scholar 

  2. Lu, B., Lan, H. & Liu, H. Additive manufacturing frontier: 3D printing electronics. Opto-Electron. Adv. 1, 170004 (2018).

    Google Scholar 

  3. Guo, S.-Z., Qiu, K., Meng, F., Park, S. H. & McAlpine, M. C. 3D printed stretchable tactile sensors. Adv. Mater. 29, 1701218 (2017).

    Article  CAS  Google Scholar 

  4. Kong, Y. L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017–7023 (2014).

    Article  CAS  Google Scholar 

  5. Qiu, K. et al. 3D printed organ models with physical properties of tissue and integrated sensors. Adv. Mater. Technol. 3, 1700235 (2018).

    Article  CAS  Google Scholar 

  6. Joung, D. et al. 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv. Funct. Mater. 28, 1801850 (2018).

    Article  CAS  Google Scholar 

  7. Kupfer, M. E. et al. In situ expansion, differentiation and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ. Res. 127, 207–224 (2020).

    Article  CAS  Google Scholar 

  8. Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013).

    Article  CAS  Google Scholar 

  9. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    Article  CAS  Google Scholar 

  10. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article  CAS  Google Scholar 

  11. Park, S. H. et al. 3D printed polymer photodetectors. Adv. Mater. 30, 1803980 (2018).

    Article  CAS  Google Scholar 

  12. Kong, Y. L., Gupta, M. K., Johnson, B. N. & McAlpine, M. C. 3D printed bionic nanodevices. Nano Today 11, 330–350 (2016).

    Article  CAS  Google Scholar 

  13. Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    Article  CAS  Google Scholar 

  14. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  Google Scholar 

  15. Singh, S., Choudhury, D., Yu, F., Mironov, V. & Naing, M. W. In situ bioprinting – bioprinting from benchside to bedside? Acta Biomater. 101, 14–25 (2020).

    Article  CAS  Google Scholar 

  16. Zhu, Z. et al. 3D printed functional and biological materials on moving freeform surfaces. Adv. Mater. 30, 1707495 (2018).

    Article  CAS  Google Scholar 

  17. O’Neill, J. J., Johnson, R. A., Dockter, R. L. & Kowalewski, T. M. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 934–940 (IEEE, 2017).

  18. Razaviarab, N., Sharifi, S. & Banadaki, Y. M. Smart additive manufacturing empowered by a closed-loop machine learning algorithm. Proc. SPIE 10969, 109690H (2019).

    Google Scholar 

  19. DeCost, B. L., Jain, H., Rollett, A. D. & Holm, E. A. Computer vision and machine learning for autonomous characterization of AM powder feedstocks. JOM 69, 456–465 (2017).

    Article  Google Scholar 

  20. Sitthi-Amorn, P. et al. MultiFab: a machine vision assisted platform for multi-material 3D printing. ACM Trans. Graph. 34, 129 (2015).

    Article  Google Scholar 

  21. Stoyanov, S. & Bailey, C. in 40th Int. Spring Semin. Electron. Technol. 1–6 (IEEE, 2017).

  22. Chen, D., Skouras, M., Zhu, B. & Matusik, W. Computational discovery of extremal microstructure families. Sci. Adv. 4, eaao7005 (2018).

    Article  CAS  Google Scholar 

  23. MacCurdy, R., Lipton, J., Li, S. & Rus, D. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2628–2635 (IEEE, 2016).

  24. Langlois, T., Shamir, A., Dror, D., Matusik, W. & Levin, D. I. Stochastic structural analysis for context-aware design and fabrication. ACM Trans. Graph. 35, 226 (2016).

    Google Scholar 

  25. Dai, C. et al. Support-free volume printing by multi-axis motion. ACM Trans. Graph. 37, 134 (2018).

    Article  Google Scholar 

  26. Yang, X., Sun, M., Bian, Y. & He, X. A room-temperature high-conductivity metal printing paradigm with visible-light projection lithography. Adv. Funct. Mater. 29, 1807615 (2019).

    Article  CAS  Google Scholar 

  27. Huang, T. Q., Qu, X., Liu, J. & Chen, S. 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices 16, 127–132 (2014).

    Article  Google Scholar 

  28. Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).

    Article  Google Scholar 

  29. Gauvin, R. et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012).

    Article  CAS  Google Scholar 

  30. Stevens, A. G. et al. Conformal robotic stereolithography. 3D Print. Addit. Manuf. 3, 226–235 (2016).

    Article  Google Scholar 

  31. Han, D., Yang, C., Fang, N. X. & Lee, H. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Addit. Manuf. 27, 606–615 (2019).

    CAS  Google Scholar 

  32. Yun, H. & Kim, H. Development of DMD-based micro-stereolithography apparatus for biodegradable multi-material micro-needle fabrication. J. Mech. Sci. Technol. 27, 2973–2978 (2013).

    Article  Google Scholar 

  33. Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article  CAS  Google Scholar 

  34. Su, R., Park, S. H., Li, Z. & McAlpine,. M. C. in Robotic Systems and Autonomous Platforms (eds Walsh, S. M. & Strano, M. S.) 309–334 (Woodhead Publishing, 2018).

  35. Haghiashtiani, G., Habtour, E., Park, S.-H., Gardea, F. & McAlpine, M. C. 3D printed electrically-driven soft actuators. Extreme Mech. Lett. 21, 1–8 (2018).

    Article  Google Scholar 

  36. Hwang, S. W. et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014).

    Article  CAS  Google Scholar 

  37. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  38. Zhou, N. et al. Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 5, eaav8141 (2019).

    Article  CAS  Google Scholar 

  39. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  CAS  Google Scholar 

  40. Zare Bidoky, F., Hyun, W. J., Song, D. & Frisbie, C. D. Printed, 1 V electrolyte-gated transistors based on poly(3-hexylthiophene) operating at >10 kHz on plastic. Appl. Phys. Lett. 113, 053301 (2018).

    Article  CAS  Google Scholar 

  41. Kim, H., Fernando, T., Li, M., Lin, Y. & Tseng, T.-L. B. Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52, 197–206 (2018).

    Article  CAS  Google Scholar 

  42. Kim, K. et al. 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8, 9799–9806 (2014).

    Article  CAS  Google Scholar 

  43. Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).

    Article  CAS  Google Scholar 

  44. Nge, T. T., Nogi, M. & Suganuma, K. Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J. Mater. Chem. C 1, 5235–5243 (2013).

    Article  CAS  Google Scholar 

  45. Kamyshny, A. & Magdassi, S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 48, 1712–1740 (2019).

    Article  CAS  Google Scholar 

  46. Russo, A. et al. Pen-on-paper flexible electronics. Adv. Mater. 23, 3426–3430 (2011).

    Article  CAS  Google Scholar 

  47. Benn, T., Cavanagh, B., Hristovski, K., Posner, J. D. & Westerhoff, P. The release of nanosilver from consumer products used in the home. J. Environ. Qual. 39, 1875–1882 (2010).

    Article  CAS  Google Scholar 

  48. Liu, P. et al. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02. J. Phys. Conf. Ser. 304, 012036 (2011).

    Article  CAS  Google Scholar 

  49. Kim, M. J. & Shin, S. Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem. Toxicol. 67, 80–86 (2014).

    Article  CAS  Google Scholar 

  50. Yu, Z., Qin, W., Lin, J., Fang, S. & Qiu, J. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed. Res. Int. 2015, 679109 (2015).

    Google Scholar 

  51. Williams, N. X. et al. Silver nanowire inks for direct-write electronic tattoo applications. Nanoscale 11, 14294–14302 (2019).

    Article  CAS  Google Scholar 

  52. Le Bideau, J., Viau, L. & Vioux, A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011).

    Article  Google Scholar 

  53. Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, 1706383 (2018).

    Article  CAS  Google Scholar 

  54. Wong, J. et al. 3D printing ionogel auxetic frameworks for stretchable sensors. Adv. Mater. Technol. 4, 1900452 (2019).

    Article  Google Scholar 

  55. Sun, J.-Y., Keplinger, C., Whitesides, G. M. & Suo, Z. Ionic skin. Adv. Mater. 26, 7608–7614 (2014).

    Article  CAS  Google Scholar 

  56. Lodge, T. P. A unique platform for materials design. Science 321, 50–51 (2008).

    Article  CAS  Google Scholar 

  57. Zhu, Z., Park, H. S. & McAlpine, M. C. 3D printed deformable sensors. Sci. Adv. 6, eaba5575 (2020).

    Article  Google Scholar 

  58. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

    Article  CAS  Google Scholar 

  59. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

    Article  CAS  Google Scholar 

  60. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  CAS  Google Scholar 

  61. Van Vlierberghe, S., Dubruel, P. & Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12, 1387–1408 (2011).

    Article  CAS  Google Scholar 

  62. Albanna, M. et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci. Rep. 9, 1856 (2019).

    Article  CAS  Google Scholar 

  63. Coradin, T., Allouche, J., Boissiere, M. & Livage, J. Sol-gel biopolymer/silica nanocomposites in biotechnology. Curr. Nanosci. 2, 219–230 (2006).

    Article  CAS  Google Scholar 

  64. Broguiere, N., Cavalli, E., Salzmann, G. M., Applegate, L. A. & Zenobi-Wong, M. Factor XIII cross-linked hyaluronan hydrogels for cartilage tissue engineering. ACS Biomater. Sci. Eng. 2, 2176–2184 (2016).

    Article  CAS  Google Scholar 

  65. Murphy, S. V., Skardal, A. & Atala, A. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101A, 272–284 (2013).

    Article  CAS  Google Scholar 

  66. Vijayavenkataraman, S., Lu, W. F. & Fuh, J. Y. H. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 8, 032001 (2016).

    Article  CAS  Google Scholar 

  67. Cacopardo, L., Guazzelli, N., Nossa, R., Mattei, G. & Ahluwalia, A. Engineering hydrogel viscoelasticity. J. Mech. Behav. Biomed. Mater. 89, 162–167 (2019).

    Article  CAS  Google Scholar 

  68. Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).

    Article  CAS  Google Scholar 

  69. Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

    Article  CAS  Google Scholar 

  70. Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016).

    Article  CAS  Google Scholar 

  71. Freyer, J. P., Fillak, D. & Jett, J. H. Use of xantham gum to suspend large particles during flow cytometric analysis and sorting. Cytometry 10, 803–806 (1989).

    Article  CAS  Google Scholar 

  72. Schuurman, W. et al. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3, 021001 (2011).

    Article  CAS  Google Scholar 

  73. Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).

    Article  CAS  Google Scholar 

  74. Smith, S., Maclean, M., MacGregor, S. J., Anderson, J. G. & Grant, M. H. Exposure of 3T3 mouse fibroblasts and collagen to high intensity blue light. Int. Conf. Biomed. Eng. 23, 1352–1355 (2009).

    Article  Google Scholar 

  75. Lewis, J. B. et al. Blue light differentially alters cellular redox properties. J. Biomed. Mater. Res. B 72B, 223–229 (2005).

    Article  CAS  Google Scholar 

  76. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017).

    Article  CAS  Google Scholar 

  77. Singh, M. et al. 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs. Lab Chip 17, 2561–2571 (2017).

    Article  CAS  Google Scholar 

  78. Johnson, B. N. et al. 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205–6217 (2015).

    Article  CAS  Google Scholar 

  79. Lin, S. et al. Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016).

    Article  CAS  Google Scholar 

  80. Yu, Y. et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 31, 1807101 (2019).

    Article  CAS  Google Scholar 

  81. Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    Article  CAS  Google Scholar 

  82. Yang, H. et al. Printing hydrogels and elastomers in arbitrary sequence with strong adhesion. Adv. Funct. Mater. 29, 1901721 (2019).

    Article  CAS  Google Scholar 

  83. Reece, T. B., Maxey, T. S. & Kron, I. L. A prospectus on tissue adhesives. Am. J. Surg. 182, S40–S44 (2001).

    Article  Google Scholar 

  84. Vakalopoulos, K. A. et al. Mechanical strength and rheological properties of tissue adhesives with regard to colorectal anastomosis: an ex vivo study. Ann. Surg. 261, 323–331 (2015).

    Article  Google Scholar 

  85. Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014).

    Article  CAS  Google Scholar 

  86. Annabi, N., Yue, K., Tamayol, A. & Khademhosseini, A. Elastic sealants for surgical applications. Eur. J. Pharm. Biopharm. 95, 27–39 (2015).

    Article  CAS  Google Scholar 

  87. Aboali, M., Manap, N. A., Darsono, A. M. & Yusof, Z. M. Review on three-dimensional (3-D) acquisition and range imaging techniques. Int. J. Appl. Eng. 12, 2409–2421 (2017).

    Google Scholar 

  88. Farahani, N. et al. Three-dimensional imaging and scanning: current and future applications for pathology. J. Pathol. Inform. 8, 36–36 (2017).

    Article  Google Scholar 

  89. Cohen, D. L., Lipton, J. I., Bonassar, L. J. & Lipson, H. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2, 035004 (2010).

    Article  CAS  Google Scholar 

  90. Zhao, X., Pan, Y., Zhou, C., Chen, Y. & Wang, C. C. An integrated CNC accumulation system for automatic building-around-inserts. J. Manuf. Process. 15, 432–443 (2013).

    Article  Google Scholar 

  91. Binder, K. W. In situ Bioprinting of the Skin. Thesis, Wake Forest Univ. (2011).

  92. Li, L. et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci. Rep. 7, 9416 (2017).

    Article  CAS  Google Scholar 

  93. Adams, J. J. et al. Conformal printing of electrically small antennas on three-dimensional surfaces. Adv. Mater. 23, 1335–1340 (2011).

    Article  CAS  Google Scholar 

  94. Jafari, B. H. et al. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 1789–1794 (IEEE, 2018).

  95. Song, X., Pan, Y. & Chen, Y. Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing. J. Manuf. Sci. Eng. 137, 021005 (2015).

    Article  Google Scholar 

  96. Wu, C., Dai, C., Fang, G., Liu, Y.-J. & Wang, C. C. in Proc. IEEE Int. Conf. Robot. Autom. 1175–1180 (IEEE, 2017).

  97. Keriquel, V. et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7, 1778 (2017).

    Article  CAS  Google Scholar 

  98. Keriquel, V. et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2, 014101 (2010).

    Article  CAS  Google Scholar 

  99. Xu, R. et al. Flexible and wearable 3D graphene sensor with 141 kHz frequency signal response capability. Appl. Phys. Lett. 111, 103501 (2017).

    Article  CAS  Google Scholar 

  100. Chen, L. & Qi, S. 50 3D printing of dermal ECM hyfrogel enhances the therapeutic effects of split thickness skin grafting in full-thickness skin wound repair. J. Burn Care Res. 40, S35–S36 (2019).

    Article  Google Scholar 

  101. Zolfagharian, A., Kaynak, A. & Kouzani, A. Closed-loop 4D-printed soft robots. Mater. Des. 188, 108411 (2020).

    Article  Google Scholar 

  102. Agostiniani, V., DeSimone, A. & Koumatos, K. Shape programming for narrow ribbons of nematic elastomers. J. Elast. 127, 1–24 (2017).

    Article  Google Scholar 

  103. Ferguson, A. L. Machine learning and data science in soft materials engineering. J. Phys. Condens. Matter 30, 043002 (2017).

    Article  Google Scholar 

  104. Fernandes, P., Guedes, J. M. & Rodrigues, H. Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter”. Comput. Struct. 73, 583–594 (1999).

    Article  Google Scholar 

  105. Maute, K. et al. Level set topology optimization of printed active composites. J. Mech. Des. 137, 111402 (2015).

    Article  Google Scholar 

  106. Sawhney, R. & Crane, K. Boundary first flattening. ACM Trans. Graph. 37, 5 (2017).

    Google Scholar 

  107. Konaković, M. et al. Beyond developable: computational design and fabrication with auxetic materials. ACM Trans. Graph. 35, 89 (2016).

    Article  Google Scholar 

  108. Kent, J. R., Carlson, W. E. & Parent, R. E. Shape transformation for polyhedral objects. ACM SIGGRAPH Comput. Graph. 26, 47–54 (1992).

    Article  Google Scholar 

  109. Hamel, C. M. et al. Machine-learning based design of active composite structures for 4D printing. Smart Mater. Struct. 28, 065005 (2019).

    Article  Google Scholar 

  110. Xiong, J., Yin, Z. & Zhang, W. Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. J. Mater. Process. Technol. 233, 100–106 (2016).

    Article  Google Scholar 

  111. Go, J. & Hart, A. J. Fast desktop-scale extrusion additive manufacturing. Addit. Manuf. 18, 276–284 (2017).

    Google Scholar 

  112. Wang, T., Kwok, T.-H. & Zhou, C. In-situ droplet inspection and control system for liquid metal jet 3D printing process. Procedia Manuf. 10, 968–981 (2017).

    Article  Google Scholar 

  113. Tlegenov, Y., Hong, G. S. & Lu, W. F. Nozzle condition monitoring in 3D printing. Robot. Comput. Integr. Manuf. 54, 45–55 (2018).

    Article  Google Scholar 

  114. Zhang, X., Lies, B., Lyu, H. & Qin, H. In-situ monitoring of electrohydrodynamic inkjet printing via scalar diffraction for printed droplets. J. Manuf. Syst. 53, 1–10 (2019).

    Article  Google Scholar 

  115. Lies, B. T., Cai, Y., Spahr, E., Lin, K. & Qin, H. Machine vision assisted micro-filament detection for real-time monitoring of electrohydrodynamic inkjet printing. Procedia Manuf. 26, 29–39 (2018).

    Article  Google Scholar 

  116. Greeff, G. P. & Schilling, M. Closed loop control of slippage during filament transport in molten material extrusion. Addit. Manuf. 14, 31–38 (2017).

    Google Scholar 

  117. Jin, Z., Zhang, Z. & Gu, G. X. Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning. Manuf. Lett. 22, 11–15 (2019).

    Article  Google Scholar 

  118. Jin, Z., Zhang, Z. & Gu, G. X. Automated real-time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence. Adv. Intell. Syst. 2, 1900130 (2020).

    Article  Google Scholar 

  119. Faes, M. et al. Process monitoring of extrusion based 3D printing via laser scanning. Conf. Proc. PMI 6, 363–367 (2014).

    Google Scholar 

  120. Holzmond, O. & Li, X. In situ real time defect detection of 3D printed parts. Addit. Manuf. 17, 135–142 (2017).

    Google Scholar 

  121. Delli, U. & Chang, S. Automated process monitoring in 3D printing using supervised machine learning. Procedia Manuf. 26, 865–870 (2018).

    Article  Google Scholar 

  122. French, A., Neill, J. O., Madson, R. & Kowalewski, T. M. in Int. Symp. Med. Robot. 1–6 (IEEE, 2018).

  123. O’Neill, J. J. & Kowalewski, T. M. Online free anatomy registration via noncontact skeletal tracking for collaborative human/robot interaction in surgical robotics. J. Med. Devices 8, 030952 (2014).

    Article  Google Scholar 

  124. Johnson, R. A., O’Neill, J. J., Dockter, R. L. & Kowalewski, T. M. in Des. Med. Devices Conf. V001T011A016 (ASME, 2017).

  125. Torresani, L. & Hertzmann, A. Automatic non-rigid 3D modeling from video. Comput. Vis. ECCV 3022, 299–312 (2004).

    Google Scholar 

  126. Bregler, C., Hertzmann, A. & Biermann, H. Recovering non-rigid 3D shape from image streams. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2, 690–696 (2000).

    Google Scholar 

  127. Lanitis, A., Taylor, C. J., Cootes, T. & Ahmed, T. in Proc. IEEE Int. Workshop Autom. Face Gesture Recognit. (IEEE, 1995).

  128. Torresani, L., Yang, D. B., Alexander, E. J. & Bregler, C. Tracking and modeling non-rigid objects with rank constraints. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1, 493–500 (2001).

    Google Scholar 

  129. Guenter, B., Grimm, C., Wood, D., Malvar, H. & Pighin, F. in Proc. Annu. Conf. Comput. Graph. Interact. Tech. 55–56 (ACM, 1998).

  130. Lin, B. et al. Video-based 3D reconstruction, laparoscope localization and deformation recovery for abdominal minimally invasive surgery: a survey. Int. J. Med. Robot. Comp. Assist. Surg. 12, 158–178 (2016).

    Article  Google Scholar 

  131. Stephens, T. K. et al. Blended shared control utilizing online identification. Int. J. Comput. Assist. Radiol. Surg. 13, 769–776 (2018).

    Article  Google Scholar 

  132. Sie, A., Winek, M. & Kowalewski, T. M. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2036–2042 (IEEE, 2014).

  133. Tholey, G., Desai, J. P. & Castellanos, A. E. Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann. Surg. 241, 102–109 (2005).

    Article  Google Scholar 

  134. Young-Eun, S., Chi-Yen, K. & Lee, M. in Proc. IEEE Int. Symp. Industr. Electron. 2153–2158 (IEEE, 2009).

  135. Kim, C. Y., Yoon, S. M., Lee, M. C. & Kang, B. H. in 8th Asian Control Conf. 553–557 (IEEE, 2011).

  136. McVeigh, E. R. et al. Real-time interactive MRI-guided cardiac surgery: aortic valve replacement using a direct apical approach. Magn. Reson. Med. 56, 958–964 (2006).

    Article  Google Scholar 

  137. Kenngott, H. G. et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg. Endosc. 28, 933–940 (2014).

    Article  Google Scholar 

  138. Hartley, R. & Zisserman, A. Multiple View Geometry in Computer Vision 2nd edn (Cambridge Univ. Press, 2003).

  139. Geiger, A., Roser, M. & Urtasun, R. Efficient large-scale stereo matching. Asian Conf. Comput. Vis. 6492, 25–38 (2011).

    Google Scholar 

  140. Geiger, A., Ziegler, J. & Stiller, C. in IEEE Intell. Veh. Symp. 963–968 (IEEE, 2011).

  141. Schmalz, C., Forster, F., Schick, A. & Angelopoulou, E. An endoscopic 3D scanner based on structured light. Med. Image Anal. 16, 1063–1072 (2012).

    Article  Google Scholar 

  142. Lin, J., Clancy, N. T. & Elson, D. S. An endoscopic structured light system using multispectral detection. Int. J. Comput. Assist. Radiol. Surg. 10, 1941–1950 (2015).

    Article  Google Scholar 

  143. Clancy, N. T. et al. Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging. Biomed. Opt. Express 2, 3119–3128 (2011).

    Article  Google Scholar 

  144. Reiter, A., Sigaras, A., Fowler, D. & Allen, P. K. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 1282–1287 (IEEE, 2014).

  145. Zhang, L., Ye, M., Giataganas, P., Hughes, M. & Yang, G.-Z. in Proc. IEEE Int. Conf. Robot. Autom. 3587–3593 (IEEE, 2017).

  146. Hughes, M. & Yang, G.-Z. Line-scanning fiber bundle endomicroscopy with a virtual detector slit. Biomed. Opt. Express 7, 2257–2268 (2016).

    Article  Google Scholar 

  147. Zhang, L. et al. From macro to micro: autonomous multiscale image fusion for robotic surgery. IEEE Robot. Autom. Mag. 24, 63–72 (2017).

    Article  Google Scholar 

  148. Stoyanov, D., Scarzanella, M. V., Pratt, P. & Yang, G.-Z. Real-time stereo reconstruction in robotically assisted minimally invasive surgery. Med. Image Comput. Comput. Assist. Interv. 6361, 275–282 (2010).

    Google Scholar 

  149. Lin, B., Sun, Y., Sanchez, J. E. & Qian, X. Efficient vessel feature detection for endoscopic image analysis. IEEE Trans. Biomed. Eng. 62, 1141–1150 (2015).

    Article  Google Scholar 

  150. Rieke, N. et al. Real-time localization of articulated surgical instruments in retinal microsurgery. Med. Image Anal. 34, 82–100 (2016).

    Article  Google Scholar 

  151. Zhao, Z., Voros, S., Weng, Y., Chang, F. & Li, R. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Comput. Assist. Surg. 22, 26–35 (2017).

    Article  Google Scholar 

  152. Chen, Z., Zhao, Z. & Cheng, X. in Chin. Autom. Congr. 2711–2714 (IEEE, 2017).

  153. Pakhomov, D., Premachandran, V., Allan, M., Azizian, M. & Navab, N. Deep residual learning for instrument segmentation in robotic surgery. Mach. Learn. Med. Imaging 11861, 566–573 (2019).

    Article  Google Scholar 

  154. Shvets, A. A., Rakhlin, A., Kalinin, A. A. & Iglovikov, V. I. in 17th IEEE Int. Conf. Mach. Learn. Appl. 624–628 (IEEE, 2018).

  155. Laina, I. et al. Concurrent segmentation and localization for tracking of surgical instruments. Med. Image Comput. Comput. Assist. Interv. 10434, 664–672 (2017).

    Google Scholar 

  156. García-Peraza-Herrera, L. C. et al. Real-time segmentation of non-rigid surgical tools based on deep learning and tracking. Comput. Assist. Robot. Endosc. 10170, 84–95 (2017).

    Article  Google Scholar 

  157. Al Hajj, H., Lamard, M., Conze, P.-H., Cochener, B. & Quellec, G. Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks. Med. Image Anal. 47, 203–218 (2018).

    Article  Google Scholar 

  158. Kumar, S., Narayanan, M. S., Singhal, P., Corso, J. J. & Krovi, V. in Proc. IEEE Int. Conf. Autom. Sci. Eng. 480–485 (IEEE, 2013).

  159. Islam, M. & Ren, H. Multi-modal PixelNet for brain tumor segmentation. Brainles. 10670, 298–308 (2018).

    Google Scholar 

  160. Winzeck, S. et al. ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9, 679 (2018).

    Article  Google Scholar 

  161. Kamnitsas, K. et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017).

    Article  Google Scholar 

  162. Wu, A., Xu, Z., Gao, M., Buty, M. & Mollura, D. J. in Proc. IEEE 13th Int. Symp. Biomed. Imaging 1363–1367 (IEEE, 2016).

  163. Terunuma, T., Tokui, A. & Sakae, T. Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy. Radiol. Phys. Technol. 11, 43–53 (2018).

    Article  Google Scholar 

  164. Islam, M., Atputharuban, D. A., Ramesh, R. & Ren, H. Real-time instrument segmentation in robotic surgery using auxiliary supervised deep adversarial learning. IEEE Robot. Autom. Lett. 4, 2188–2195 (2019).

    Article  Google Scholar 

  165. Zhao, H., Qi, X., Shen, X., Shi, J. & Jia, J. ICNet for real-time semantic segmentation on high-resolution images. Eur. Conf. Comput. Vis. 11207, 418–434 (2018).

    Google Scholar 

  166. Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2881–2890 (IEEE, 2017).

  167. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical Image segmentation. Med. Image Comput. Comput. Assist. Interv. 9351, 234–241 (2015).

    Google Scholar 

  168. Voros, S., Long, J.-A. & Cinquin, P. Automatic detection of instruments in laparoscopic images: a first step towards high-level command of robotic endoscopic holders. Int. J. Robot. Res. 26, 1173–1190 (2007).

    Article  Google Scholar 

  169. Krupa, A. et al. Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing. IEEE Trans. Robot. Autom. 19, 842–853 (2003).

    Article  Google Scholar 

  170. Lladó, X., Del Bue, A., Oliver, A., Salvi, J. & Agapito, L. Reconstruction of non-rigid 3D shapes from stereo-motion. Pattern Recognit. Lett. 32, 1020–1028 (2011).

    Article  Google Scholar 

  171. Bue, A. D., Llad, X. & Agapito, L. Non-rigid metric shape and motion recovery from uncalibrated images using priors. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1, 1191–1198 (IEEE, 2006).

  172. Sorkine, O. & Alexa, M. in Proc. 5th Eurograph. Symp. Geom. Process. 109–116 (Eurographics Association, 2007).

  173. Zollhöfer, M. et al. Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33, 156 (2014).

    Article  Google Scholar 

  174. Agudo, A., Calvo, B. & Montiel, J. M. M. 3D reconstruction of non-rigid surfaces in real-time using wedge elements. Eur. Conf. Comput. Vis. 7583, 113–122 (2012).

    Google Scholar 

  175. Agudo, A., Calvo, B. & Montiel, J. M. M. in Proc. IEEE Int. Conf. Comput. Vis. 1586–1593 (IEEE, 2011).

  176. Sumner, R. W., Schmid, J. & Pauly, M. Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 80 (2007).

    Article  Google Scholar 

  177. Dou, M. et al. Fusion4D: real-time performance capture of challenging scenes. ACM Trans. Graph. 35, 114 (2016).

    Article  Google Scholar 

  178. Song, J., Wang, J., Zhao, L., Huang, S. & Dissanayake, G. Dynamic reconstruction of deformable soft-tissue with stereo scope in minimal invasive surgery. IEEE Robot. Autom. Lett. 3, 155–162 (2018).

    Article  Google Scholar 

  179. Guo, K. et al. Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera. ACM Trans. Graph. 36, 44a (2017).

    Article  Google Scholar 

  180. Torresani, L., Hertzmann, A. & Bregler, C. Nonrigid structure-from-motion: estimating shape and motion with hierarchical priors. IEEE Trans. Pattern Anal. Mach. Intell. 30, 878–892 (2008).

    Article  Google Scholar 

  181. Blanz, V. & Vetter, T. in Proc. 26th Annu. Conf. Comput. Graph. Interact. Tech. 187–194 (ACM, 1999).

  182. Cootes, T. F. & Taylor, C. J. Statistical models of appearance for medical image analysis and computer vision. Proc. SPIE 4322, 236–248 (2001).

    Article  Google Scholar 

  183. Sirovich, L. & Kirby, M. Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4, 519–524 (1987).

    Article  CAS  Google Scholar 

  184. Turk, M. & Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991).

    Article  CAS  Google Scholar 

  185. Song, J., Wang, J., Zhao, L., Huang, S. & Dissanayake, G. MIS-SLAM: Real-time large-scale dense deformable slam system in minimal invasive surgery based on heterogeneous computing. IEEE Robot. Autom. Lett. 3, 4068–4075 (2018).

    Article  Google Scholar 

  186. Newcombe, R. A., Fox, D. & Seitz, S. M. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 343–352 (IEEE, 2015).

  187. Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C. & Stamminger, M. VolumeDeform: real-time volumetric non-rigid reconstruction. Eur. Conf. Comput. Vis. 9912, 362–379 (2016).

    Google Scholar 

  188. Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E. & Sitti, M. A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots. Int. J. Intell. Robot. Appl. 1, 399–409 (2017).

    Article  Google Scholar 

  189. Lamarca, J., Parashar, S., Bartoli, A. & Montiel, J. DefSLAM: tracking and mapping of deforming scenes from monocular sequences. Preprint at arXiv https://arxiv.org/abs/1908.08918 (2019).

  190. Song, J., Zhao, L., Huang, S. & Dissanayake, G. An observable time series based SLAM algorithm for deforming environment. Preprint at arXiv https://arxiv.org/abs/1906.08563 (2019).

  191. Yang, B., Liu, C., Zheng, W. & Liu, S. Motion prediction via online instantaneous frequency estimation for vision-based beating heart tracking. Inf. Fusion 35, 58–67 (2017).

    Article  Google Scholar 

  192. Mountney, P. & Yang, G.-Z. Motion compensated SLAM for image guided surgery. Med. Image Comput. Comput. Assist. Interv. 6362, 496–504 (2010).

    Google Scholar 

  193. Kehoe, B. et al. in Proc. IEEE Int. Conf. Robot. Autom. 1432–1439 (IEEE, 2014).

  194. Losi, P. et al. Cyanoacrylate surgical glue as an alternative to suture threads for mesh fixation in hernia repair. J. Surg. Res. 163, e53–e58 (2010).

    Article  CAS  Google Scholar 

  195. Hanson, T. L., Diaz-Botia, C. A., Kharazia, V., Maharbiz, M. M. & Sabes, P. N. The “sewing machine” for minimally invasive neural recording. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/578542v1 (2019).

  196. Hakimi, N. et al. Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab Chip 18, 1440–1451 (2018).

    Article  CAS  Google Scholar 

  197. Di Bella, C. et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J. Tissue Eng. Regen. Med. 12, 611–621 (2018).

    Article  CAS  Google Scholar 

  198. O’Connell, C. D. et al. Development of the biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 8, 015019 (2016).

    Article  Google Scholar 

  199. Lane, T. A short history of robotic surgery. Ann. R. Coll. Surg. Engl. 100, 5–7 (2018).

    Article  Google Scholar 

  200. Shojania, K. G. & Dixon-Woods, M. Estimating deaths due to medical error: the ongoing controversy and why it matters. BMJ Qual. Saf. 26, 423–428 (2017).

    Article  Google Scholar 

  201. Nio, D., Diks, J., Bemelman, W. A., Wisselink, W. & Legemate, D. A. Laparoscopic vascular surgery: a systematic review. Eur. J. Vasc. Endovasc. Surg. 33, 263–271 (2007).

    Article  CAS  Google Scholar 

  202. Kim, Y., Parada, G. A., Liu, S. & Zhao, X. Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019).

    Article  Google Scholar 

  203. Lehman, A. C., Wood, N. A., Farritor, S., Goede, M. R. & Oleynikov, D. Dexterous miniature robot for advanced minimally invasive surgery. Surg. Endosc. 25, 119–123 (2011).

    Article  Google Scholar 

  204. Niccolini, M., Petroni, G., Menciassi, A. & Dario, P. in Proc. IEEE Int. Conf. Roboti. Autom. 3395–3400 (IEEE, 2012).

  205. Orekhov, A. L., Abah, C. & Simaan, N. in The Encyclopedia of Medical Robotics Vol. 1 (ed. Patel, R.) 203–243 (World Scientific, 2018).

  206. Kaouk, J. H. et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur. Urol. 66, 1033–1043 (2014).

    Article  Google Scholar 

  207. Agarwal, D. K. et al. Initial experience with da Vinci single-port robot-assisted radical prostatectomies. Eur. Urol. 77, 373–379 (2019).

    Article  Google Scholar 

  208. Morelli, L. et al. Da Vinci single site surgical platform in clinical practice: a systematic review. Int. J. Med. Robot. Comp. Assist. Surg. 12, 724–734 (2016).

    Article  Google Scholar 

  209. de Moura, D. T. H. et al. Robot-assisted endoscopic submucosal dissection versus conventional ESD for colorectal lesions: outcomes of a randomized pilot study in endoscopists without prior ESD experience (with video). Gastrointest. Endosc. 90, 290–298 (2019).

    Article  Google Scholar 

  210. Sethi, N. et al. Transoral robotic surgery using the Medrobotic Flex system: the Adelaide experience. J. Robot. Surg. 14, 109–113 (2019).

    Article  Google Scholar 

  211. Persky, M. J. et al. Transoral surgery using the Flex robotic system: initial experience in the United States. Head Neck 40, 2482–2486 (2018).

    Article  Google Scholar 

  212. Peters, B. S., Armijo, P. R., Krause, C., Choudhury, S. A. & Oleynikov, D. Review of emerging surgical robotic technology. Surg. Endosc. 32, 1636–1655 (2018).

    Article  Google Scholar 

  213. Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article  Google Scholar 

  214. McKinley, S. et al. in Proc. IEEE Int. Conf. Robot. Autom. (IEEE, 2016).

  215. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  CAS  Google Scholar 

  216. McClintock, H., Temel, F. Z., Doshi, N., Koh, J.-S. & Wood, R. J. The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot. Sci. Robot. 3, eaar3018 (2018).

    Article  Google Scholar 

  217. Roach, D. J. et al. The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures. Addit. Manuf. 29, 100819 (2019).

    Google Scholar 

  218. Padoy, N. & Hager, G. D. in Proc. IEEE Int. Conf. Robot. Autom. 5285–5292 (IEEE, 2011).

  219. Moustris, G. P., Hiridis, S. C., Deliparaschos, K. M. & Konstantinidis, K. M. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int. J. Med. Robot. Comp. Assist. Surg. 7, 375–392 (2011).

    Article  CAS  Google Scholar 

  220. Peng, H. et al. in Proc. Conf. Hum. Factors Comput. Syst. 579 (ACM, 2018).

  221. Zhang, J., Zhong, Y. & Gu, C. Deformable models for surgical simulation: a survey. IEEE Rev. Biomed. Eng. 11, 143–164 (2017).

    Article  Google Scholar 

  222. Pfeiffer, M., Riediger, C., Weitz, J. & Speidel, S. Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14, 1147–1155 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

M.C.M. acknowledges support by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award number DP2EB020537. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. H.S.P. acknowledges support from the Division of Information and Intelligent Systems of the National Science Foundation (1846031). Z.Z. acknowledges support from the graduate school of the University of Minnesota (2019–20 Doctoral Dissertation Fellowship).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., H.S.P. and M.C.M. conceptualized the article. Z.Z. researched data and wrote the article. D.W.H.N. researched data related to shape programming and wrote the corresponding section. All authors contributed to the discussion of content and edited the article.

Corresponding authors

Correspondence to Hyun Soo Park or Michael C. McAlpine.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Ng, D.W.H., Park, H.S. et al. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater 6, 27–47 (2021). https://doi.org/10.1038/s41578-020-00235-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00235-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research