Skip to main content
Log in

General heat balance for oxygen steelmaking

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Energy balances are a general fundamental approach for analyzing the heat requirements for metallurgical processes. The formulation of heat balance equations was involved by computing the various components of heat going in and coming out of the oxygen steelmaking furnace. The developed model was validated against the calculations of Healy and McBride. The overall heat losses that have not been analyzed in previous studies were quantified by back-calculating heat loss from 35 industrial data provided by Tata Steel. The results from the model infer that the heat losses range from 1.3% to 5.9% of the total heat input and it can be controlled by optimizing the silicon in hot metal, the amount of scrap added and the post-combustion ratio. The model prediction shows that sensible heat available from the hot metal accounts for around 66% of total heat input and the rest from the exothermic oxidation reactions. Out of 34% of the heat from exothermic reactions, between 20% and 25% of heat is evolved from the oxidation of carbon to carbon monoxide and carbon dioxide. This model can be applied to predict the heat balance of any top blown oxygen steelmaking technology but needs further validation for a range of oxygen steelmaking operations and conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C pX :

Specific heat of X (kJ/(kg K))

H Diss_X :

Heat of dissolution of X (kJ/kg)

H HR_X :

Heat of reaction of X (kJ/kg)

H T :

Enthalpy at temperature T (kJ/kg)

H 298 :

Enthalpy at 298 K (kJ/kg)

L :

Latent heat (kJ/kg)

T :

Temperature (K)

T fg :

Flue gas temperature (K)

T HM :

Hot metal temperature (K)

T m :

Melting point of steel (K)

T slag :

Slag temperature (K)

T steel :

Steel temperature (K)

W fg :

Mass of flue gas (kg)

W HM :

Mass of hot metal (kg)

W scrap :

Mass of scrap (kg)

W slag :

Mass of slag (kg)

W steel :

Mass of steel (kg)

w(C)HM :

Carbon content of hot metal (%)

w(C)steel :

Carbon content of steel (%)

w(Fe)HM :

Fe content of hot metal (%)

w(Fe)scrap :

Fe content of scrap (%)

w(Fe)steel :

Fe content of steel (%)

w(Mn)HM :

Mn content of hot metal (%)

w(Mn)steel :

Mn content of steel (%)

w(P)HM :

P content of hot metal (%)

w(P)steel :

P content of steel (%)

w(Si)HM :

Si content of hot metal (%)

w(Si)steel :

Si content of steel (%)

w(CaO):

CaO content in slag (%)

w(FeO):

FeO content in slag (%)

w(MgO):

MgO content in slag (%)

w(MnO):

MnO content in slag (%)

w(P2O5):

P2O5 content in slag (%)

w(SiO2):

SiO2 content in slag (%)

X:

Corresponding elements in hot metal or oxides in slag

References

  1. The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook (2nd Edition), Raw materials through Steelmaking, including Recycling Technologies, Common Systems, and General Energy Saving Measures, Asia-Pacific Partnership on Clean Development and Climate, United States Department of State, and United States Department of Energy, Washington DC, USA, 2010.

  2. World Steel Association, Energy Use in the Iron and Steel Industry, 2019.

  3. R. Fruehan, O. Fortini, H. Paxton, R, Brindle, Theoretical minimum energies to produce steel for selected conditions, U.S. Department of Energy Office of Industrial Technologies, Washington DC, USA, 2000.

  4. T.W. Miller, B. Steel, J. Jimenez, A. Sharan, D.A. Goldstein, in: Making Shaping and Treating of Steel, 11th Ed., AISE, Pittsburgh, USA, 1998, pp. 475–524.

    Google Scholar 

  5. W.O. Philbrook, JOM 10 (1958) 477–482.

    Article  Google Scholar 

  6. W.J. Slatosky, JOM 12 (1960) 226–230.

    Article  Google Scholar 

  7. P. Dauby, M. Bach, P. Hoffman, P. Niles, Charge calculation in Steelmaking, CNRM Metallurgical Report No.15, 1968.

  8. R.A. Goel, K.P. Singh, P.C. Kapur, in: I.I.M. Silver Jubilee Symposium, Kanpur, India, 1972, pp. 357.

  9. K. Katsura, K. Isobe, T. Itaoka, JOM 16 (1964) 340–345.

    Article  Google Scholar 

  10. J.H. Cox, R.K. Iyengar, in: BOF steelmaking, 4th ed., AIME, New York, USA, 1974, pp. 243–285.

    Google Scholar 

  11. H.W. Meyer, D.A. Dukelow, M.M. Fischer, JOM 16 (1964) 501–507.

    Article  Google Scholar 

  12. C. Kubat, H. Taşkin, R. Artir, A. Yilmaz, Robot. Auton. Syst. 49 (2004) 193–205.

    Article  Google Scholar 

  13. R.I.L. Guthrie, P. Stubbs, Can. Metall. Quart. 12 (1973) 465–473.

    Article  Google Scholar 

  14. A.K. Shukla, B. Deo, D.G.C. Robertson, Metall. Mater. Trans. B 44 (2013) 1407–1427.

    Article  Google Scholar 

  15. P.D. Desai, J. Phys. Chem. Ref. Data 15 (1986) 967–983.

    Article  Google Scholar 

  16. S. Asai, I. Muchi, Trans. ISIJ 10 (1970) 250–262.

    Article  Google Scholar 

  17. G.W. Healy, D.L. McBride, in: BOF steelmaking, 4th ed., AIME, New York, USA, 1974, pp. 101–158.

    Google Scholar 

  18. E.T. Turkdogan, Fundamentals of steelmaking, vol. 1, The Institute of Materials, London, UK, 1996.

    Google Scholar 

  19. H. Jalkanen, L. Holappa, in: Treatise on Process Metallurgy, vol. 3, Elsevier Ltd., 2014, pp. 223–270.

  20. Y.E. Lee, L. Kolbeinsen, ISIJ Int. 47 (2007) 764–765.

    Article  Google Scholar 

  21. M. Nakamura, M. Tate, Tetsu-to-Hagane 63 (1977) 236–245.

    Article  Google Scholar 

  22. A. Koryttseva, A. Navrotsky, J. Am. Ceram. Soc. 100 (2017) 1172–1177.

    Article  Google Scholar 

  23. M. Meraikib, Steel Res. Int. 79 (2008) 340–347.

    Article  Google Scholar 

  24. M. Meraikib, ISIJ Int. 33 (1993) 352–360.

    Article  Google Scholar 

  25. M. Hirai, R. Tsujino, T. Mukai, T. Harada, M. Omori, Trans. ISIJ 27 (1987) 805–813.

    Article  Google Scholar 

  26. S. Li, X. Wei, L. Yu, Fuel 90 (2011) 1350–1360.

    Article  Google Scholar 

  27. M. Kirschen, K. Badr, H. Pfeifer, Energy 36 (2011) 6146–6155.

    Article  Google Scholar 

  28. H. Gou, G.A. Irons, W.K. Lu, Iron Steelmaker 22 (1995) 47–54.

    Google Scholar 

  29. B.L. Farrand, J.E. Wood, F.J. Goetz, in: Steelmaking Conference Proceedings, Dofasco Inc., Hamilton, Canada, 1992, pp. 173–179.

    Google Scholar 

  30. H. Gou, G.A. Irons, W.K. Lu, Metall. Trans. B 24 (1993) 179–188.

    Article  Google Scholar 

  31. R.J. Fruehan, R.J. Matway, Optimization of post combustion in steelmaking, American Iron and Steel Institute, US, 2004.

    Book  Google Scholar 

  32. N. Madhavan, G.A. Brooks, M.A. Rhamdhani, B.K. Rout, F.N.H. Schrama, A. Overbosch, Ironmak. Steelmak. (2020). https://doi.org/10.1080/03019233.2020.1731252.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Tata Steel Europe in the Netherlands, by providing financial, technical assistance and industrial data for validating with the static mass balance model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Madhavan.

Appendix

Appendix

To calculate the post-combustion ratio, the present study refers to measured values of off-gas provided by Tata Steel, the Netherlands. The air ingress from the hood gap needs to be subtracted from the off-gas data to calculate the exact amount of CO2 in the converter. The CO2 in the converter is calculated using Eq. (16) where OG corresponds to off-gas.

$$\varphi \left( {{\text{CO}}_{2} } \right)^{\text{air}} = 2 \times (\frac{21}{79}\left[ {\varphi \left( {{\text{N}}_{2} } \right)^{\text{OG}} - \varphi \left( {{\text{O}}_{2} } \right)^{\text{OG}} } \right)$$
(15)
$$\varphi \left( {{\text{CO}}_{2} } \right)^{\text{converter}} = \left( {\varphi \left( {{\text{CO}}_{2} } \right)^{\text{OG}} - \varphi \left( {{\text{CO}}_{2} } \right)^{\text{air}} } \right)$$
(16)

Figure 11 shows the average values of the post-combustion ratio separately calculated for 35 heat sets provided by Tata Steels, the Netherlands. As the values range from 0.10 to 0.14, an average value of 0.12 is considered or assumed for present heat balance calculations.

Fig. 11
figure 11

Percentage heat contribution from various exothermic oxidation reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavan, N., Brooks, G., Rhamdhani, M. et al. General heat balance for oxygen steelmaking. J. Iron Steel Res. Int. 28, 538–551 (2021). https://doi.org/10.1007/s42243-020-00491-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00491-0

Keywords

Navigation