Skip to main content
Log in

Real structure and thermal properties of solid solutions of γ-GdxDy1−xS1.5−y

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The work is devoted to the study of temperature dependences of thermal conductivity (T = 300–770 K) of polycrystallic samples of solid solutions based on gadolinium and dysprosium sulfides of the compositions: γ-GdxDy1−xS1.49 (x = 0.1, 0.2, 0.3, 0.4). It has been found that the morphological features of samples, namely, the specific surface area of crystallites, which causes a change in the number of deformation centers, determines the value of the thermal conductivity of γ-GdxDy1−xS1.49 solid solutions. The presence of an abnormal decrease in thermal conductivity for the composition of x = 0.2 has been established. When the temperature increases to 770 K, this anomaly decreases slightly. The minimum value of the thermal conductivity coefficient of 0.68 ± 0.03 W/(m·K) is reached for the composition under consideration at 770 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. He, M.G Kanatzidis, and V.P. Dravid, High performance bulk thermoelectrics via a panascopic approach, Mater. Today, 2013, Vol. 16, No. 5, P. 166–176.

    Article  Google Scholar 

  2. D.K. Aswal, R. Basu, and A. Singh, Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects, Energy Convers. Manag., 2016, Vol. 114, P. 50–67.

    Article  Google Scholar 

  3. T.M. Tritt, H. Bottner, and L. Chen, Thermoelectrics: direct solar thermal energy conversion, MRS Bull., 2008, Vol. 33, No. 4, P. 366–368.

    Article  Google Scholar 

  4. W. Liu, Q. Jie, H.S. Kim, and Z. Ren, Current progress and future challenges in thermoelectric power generation: from materials to devices, Acta Mater., 2008, Vol. 87, No. 155, P. 357–376.

    Google Scholar 

  5. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ.Sci., 2012, Vol. 5, No. 1, P. 5147–5162.

    Article  Google Scholar 

  6. L.E. Bell, Cooling, heating, generating power and recovering waste heat with thermoelectric systems, Science, 2008, Vol. 321, No. 5895, P. 1457–1461.

    Article  ADS  Google Scholar 

  7. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Inter. Ed., 2009, Vol. 48, No. 46, P. 8616–8639.

    Article  Google Scholar 

  8. G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, Nat. Mater., 2008, Vol. 7, No. 2, P. 105–114.

    Article  ADS  Google Scholar 

  9. A.V. Shevelkov, Chemical aspects of the design of thermoelectric materials, Rus. Chem. Rev., 2008, V. 77, No. 1, P. 3–21.

    Article  Google Scholar 

  10. R. Zevenhoven and A. Beyene, The relative contribution of waste heat from power plants to global warming, Energy, 2011, Vol. 36, No. 6, P. 3754–3762.

    Article  Google Scholar 

  11. J. Yang and T. Caillat, Thermoelectric materials for space and automotive power generation, MRS Bull., 2006, Vol. 31, No. 3, P. 224–229.

    Article  Google Scholar 

  12. S. LeBlanc, Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications, Sustain. Mater. and Technol., 2014, Vol. 1, P. 26–35.

    Google Scholar 

  13. G.S. Nolas, J. Poon, and M. Kanatzidis, Recent developments in bulk thermoelectric materials, MRS Bull., 2006, Vol. 31, No. 3, P. 199–205.

    Article  Google Scholar 

  14. G.G. Gadzhiev, Sh.M. Ismailov, Kh.Kh. Abdullaev, M.M. Khamidov, and Z.M. Omarov, Thermal and electrical properties of gadolinium sulfides at high temperatures, High Temperature, 2001, Vol. 39, No. 3, P. 437–442.

    Article  Google Scholar 

  15. S.M. Luguev, N.V. Lugueva, and V.V. Sokolov, Heat conductivity of Gd2S3 and Dy2S3, Phys. Solid State, 1988, Vol. 30, No. 3, P. 873–875.

    Google Scholar 

  16. C. Wood, A. Lockwood, J. Parker, A. Zoltan, D. Zoltan, L.R. Danielson, and V. Raag, Thermoelectric properties of lanthanum sulfide, J. Appl. Phys., 1985, Vol. 58, No. 4, P. 1542–1547.

    Article  ADS  Google Scholar 

  17. S.M. Luguev, N.V. Lugueva, and V.V. Sokolov, Heat conductivity and thermoelectric properties of dysprosium sulfides, in: XIII Int. Seminar “Thermoelectrics and their application”, Ioffe Institute, St. Petersburg, 2012, P. 1–5.

    Google Scholar 

  18. V.V. Bakovets, A.V. Sotnikov, A.Sh. Agazhanov, S.V. Stankus, E.V. Korotaev, D.P. Pishchur, and A.I. Shkatulov, Some features of thermophysical properties of γ-Gd2S3 ceramics based on real structure, J. Amer. Ceram. Soc., 2018, Vol. 101, No. 10, P. 4773–4782.

    Article  Google Scholar 

  19. S.M. Luguev, N.V. Lugueva, and V.V. Sokolov, Heat conductivity of Gd2S3 with excess gadolinium, Phys. Solid State, 2000, Vol. 42, No. 6, P. 1045–1048.

    Article  ADS  Google Scholar 

  20. A.V. Sotnikov, V.V. Bakovets, A.Sh. Agazhanov, S.V. Stankus, D.P. Pishchur and V.V. Sokolov, Influence of morphological defects on thermophysical properties of γ-Gd2S3, Phys. Solid State, 2018, Vol. 60, No. 3, P. 487–454.

    Article  ADS  Google Scholar 

  21. S.M. Luguev, N.V. Lugueva, and V.V. Sokolov, Temperature and concentration dependences of thermal conductivity of solid solutions of gadolinium and dysprosium sulfides, Thermophysics and Aeromechanics, 2012, Vol. 19, No. 2, P. 343–348.

    Article  ADS  Google Scholar 

  22. H.S. Nalwa, Nanostructured Materials and Nanotechnology, Academic Press, San Diego, 2001.

    Google Scholar 

  23. A.I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies, Fizmatlit, Moscow, 2005.

    Google Scholar 

  24. V.V. Bakovets, L.N. Trushnikova, I.V. Korol’kov, P.E. Plyusnin, I.P. Dolgovesova, T.D. Pivovarova, and N.I. Alferova, Synthesis of the nanostructured luminophor Y2O3-Eu-Bi by the sol-gel, Rus. J. General Chemistry, 2013, Vol. 83, No. 1, P. 1–9.

    Article  Google Scholar 

  25. M. Ohta, S. Hirai, H. Kato, V.V. Sokolov, and V.V. Bakovets, Thermal decomposition of nh4scn for preparation of Ln2S3 (Ln = La and Gd) by sulfurization, Mater. Trans., 2009, Vol. 50, No. 7, P. 1885–1889.

    Article  Google Scholar 

  26. L.S. Chuchalina, I.G. Vasilieva, A.A. Kamarzin, and V.V. Sokolov, Indirect gas-chromatography method for determining the composition of lanthanum sulfides, Journal of Analytic Chemistry of the USSR, 1978, Vol. 33, No. 1, P. 190–192.

    Google Scholar 

  27. R.A. Svelin, Thermodynamics of Solid State, Metallurgia, Moscow, 1968.

    Google Scholar 

  28. T.G. Arkatova, B.P. Zhuze, M.G Kariy, A.A. Kamarzin et al., Vibration-spectra of sulfides of rare-earth-metals of ln2s3 composition, Soviet Physics, Solid State, 1979, Vol. 21, No. 11, P. 3428–3433.

    Google Scholar 

  29. B.A. Kolesov, A.A. Kamarzin, and V.V. Sokolov, Raman spectra and structural characteristics of γ-Ln2S3 vacancy crystals, J. Structural Chemistry, 1997, Vol. 38, No. 4, P. 544–549.

    Article  Google Scholar 

  30. D.S. Knight and W.B. White, Raman spectroscopic study of the rare earth sesquisulfides, Spectrochimica Acta, 1990, Vol. 46, No. 3, P. 381–387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sotnikov.

Additional information

The work was carried out within the framework of the state task of the NIIC SB RAS in the field of basic scientific research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakovets, V.V., Sotnikov, A.V., Agazhanov, A.S. et al. Real structure and thermal properties of solid solutions of γ-GdxDy1−xS1.5−y. Thermophys. Aeromech. 27, 439–448 (2020). https://doi.org/10.1134/S0869864320030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864320030129

Keywords

Navigation