Skip to main content
Log in

Strategies to display heterologous proteins on the cell surface of lactic acid bacteria using as anchor the C-terminal domain of Lactobacillus acidophilus SlpA

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The surface-layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling subunits, non-covalently bound to the most outer cell wall envelope, which constitutes up to 20% of the total cell protein content. These attributes make S-layer proteins an excellent anchor for the development of microbial cell-surface display systems. In L. acidophilus, the S-layer is formed predominantly by the protein SlpA. We have previously shown that the C-terminal domain of SlpA is responsible for the cell wall anchorage on L. acidophilus ATCC 4356. In the present study, we evaluated the C-terminal domain of SlpA of L. acidophilus ATCC 4356 as a potential anchor domain to display functional proteins on the surface of non-genetically modified lactic acid bacteria (LAB). To this end, green fluorescent protein (GFP)-CTSlpA was firstly produced in Escherichia coli and the recombinant proteins were able to spontaneously bind to the cell wall of LAB in a binding assay. GFP was successfully displayed on the S-layer stripped surface of L. acidophilus. Both the binding stability and cell survival of L. acidophilus decorated with the recombinant protein were then studied in simulated gastrointestinal conditions. Furthermore, NaCl was tested as a safer alternative to LiCl for S-layer removal. This study presents the development of a protein delivery platform involving L. acidophilus, a microorganism generally regarded as safe, which utilizes the contiguous, non-covalently attached S-layer at the cell surface of the bacterium without introducing any genetic modification.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allievi MC, Ruzal SM, Palomino MM (2019) Modifications of Lactobacillus surface under environmental stress conditions. In: Ruzal SM (ed) Lactobacillus genomics and metabolic engineering. Caister Academic Press, New York, pp 81–104

    Google Scholar 

  • Antikainen J, Anton L, Sillanpää J, Korhonen TK (2002) Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 46(2):381–394

    Article  CAS  Google Scholar 

  • Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73(2 Suppl):399S–405S

    Article  CAS  Google Scholar 

  • Bosma T, Kanninga R, Neef J, Audouy SAL, van Roosmalen ML, Steen A, Buist G, Kok J, Kuipers OP, Robillard G, Leenhouts K (2006) Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl Environ Microbiol 72(1):880–889

    Article  CAS  Google Scholar 

  • Brinster S, Furlan S, Serror P (2007) C-Terminal WxL domain mediates cell Wall binding in Enterococcus faecalis and other Gram-positive bacteria. J Bacteriol 189(4):1244–1253

    Article  CAS  Google Scholar 

  • Bull MJ, Jolley KA, Bray JE et al (2014) The domestication of the probiotic bacterium Lactobacillus acidophilus. Sci Rep 4:7202

    Article  CAS  Google Scholar 

  • Chen X, Chen Y, Li X, Chen N, Fang W (2009) Characterization of surface layer proteins in Lactobacillus crispatus isolate ZJ001. J Microbiol Biotechnol 19(10):1176–1183

    CAS  Google Scholar 

  • Dieterle ME, Bowman C, Batthyany C, Lanzarotti E, Turjanski A, Hatfull G, Piuri M (2014) Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl Environ Microbiol 80(22):7107–7121

    Article  Google Scholar 

  • do Carmo FLR, Rabah H, Carvalho RDD, Gaucher F, Cordeiro BF, da Silva SH, Le Loir Y, Azevedo V, Jan G (2018) Extractable bacterial surface proteins in probiotic-host interaction. Front Microbiol 9:645

    Article  Google Scholar 

  • Eslami N, Kermanshahi RK, Erfan M (2013) Studying the stability of S-layer protein of Lactobacillus acidophilus ATCC 4356 in simulated gastrointestinal fluids using SDS-PAGE and circular dichroism. Iran J Pharm Res 12(Suppl):47–56

    CAS  Google Scholar 

  • Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182(14):4068–4076

    Article  CAS  Google Scholar 

  • Fina-Martin J, Palomino MM, Cutine AM, Modenutti CP, Do Porto DAF, Allievi MC, Zanini SH, Mariño KV, Barquero AA, Ruzal SM (2019) Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Appl Microbiol Biotechnol 103:4839–4857

    Article  CAS  Google Scholar 

  • Guarner F, Sanders ME, Eliakim R et al (2017) WGO practice guideline—probiotics and prebiotics, vol 2018. World Gastroenterology Organisation: Milwaukee, WI. http://www.worldgastroenterology.org/guidelines/global-guidelines/probiotics-and-prebiotics. Accessed 1 April 2018

  • Hu S, Kong J, Kong W, Guo T, Ji M (2010) Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria. Appl Environ Microbiol 76(8):2410–2418

    Article  CAS  Google Scholar 

  • Hu S, Kong J, Sun Z, Han L, Kong W, Yang P (2011) Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein. Microb Cell Fact 10:86

    Article  CAS  Google Scholar 

  • Malamud M, Bolla PA, Carasi P, Gerbino E, Gómez-Zavaglia A, Mobili P, María de los Angeles Serradell MDLA (2019) S-Layer proteins from Lactobacilli: biogenesis, structure, functionality and biotechnological applications. In: Ruzal SM (ed) Lactobacillus genomics and metabolic engineering. Caister Academic Press, New York, pp 105–130

    Google Scholar 

  • Mao R, Zhou K, Han Z, Wang Y (2016) Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles. Microb Cell Fact 15:80

    Article  Google Scholar 

  • Martínez MG, Prado Acosta M, Candurra NA, Ruzal SM (2012) S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun 422(4):590–595

    Article  Google Scholar 

  • Matsuguchi T, Takagi A, Matsuzaki T, Nagaoka M, Ishikawa K, Yokokura T, Yoshikai Y (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin Diagn Lab Immunol 10(2):259–266

    Article  CAS  Google Scholar 

  • Meng J, Gao S-M, Zhang Q-X, Lu R-R (2015) Murein hydrolase activity of surface layer proteins from Lactobacillus acidophilus against Escherichia coli. Int J Biol Macromol 79:527–532

    Article  CAS  Google Scholar 

  • O’Flaherty S, Klaenhammer TR (2016) Multivalent chromosomal expression of the Clostridium botulinum serotype A neurotoxin heavy-chain antigen and the Bacillus anthracis protective antigen in Lactobacillus acidophilus. Appl Environ Microbiol 82(20):6091–6101

    Article  Google Scholar 

  • O’Flaherty S, Crawley AB, Theriot CM, Barrangou R (2018) The Lactobacillus bile salt hydrolase repertoire reveals niche-specific adaptation. mSphere 3(3):e00140–e00118

    Article  Google Scholar 

  • Palomino MM, Allievi MC, Fina Martin J, Waehner PM, Acosta MP, Rivas CS, Ruzal SM (2015) Draft genome sequence of the probiotic strain Lactobacillus acidophilus ATCC 4356. Genome Announc 3(1):e01421–e01414

    Article  Google Scholar 

  • Palomino MM, Waehner PM, Fina Martin J, Ojeda P, Malone L, Rivas CS, Acosta MP, Allievi MC, Ruzal SM (2016) Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356. Appl Microbiol Biotechnol 100(19):8475–8484

    Article  CAS  Google Scholar 

  • Prado-Acosta M, Palomino MM, Allievi MC, Rivas CS, Ruzal SM (2008) Murein hydrolase activity in the surface layer of Lactobacillus acidophilus ATCC 4356. Appl Environ Microbiol 74(24):7824–7827

    Article  Google Scholar 

  • Prado-Acosta M, Ruzal SM, Allievi MC, Palomino MM, Rivas CS (2010) Synergistic effects of the Lactobacillus acidophilus surface layer and nisin on bacterial growth. Appl Environ Microbiol 76(3):974–977

    Article  CAS  Google Scholar 

  • Qin J, Wang X, Kong J, Ma C, Xu P (2014) Construction of a food-grade cell surface display system for Lactobacillus casei. Microbiol Res 169(9–10):733–740

    Article  CAS  Google Scholar 

  • Ramachandran P, Lacher DW, Pfeiler EA, Elkins CA (2013) Development of a tiered multilocus sequence typing scheme for members of the Lactobacillus acidophilus complex. Appl Environ Microbiol 79(23):7220–7228

    Article  CAS  Google Scholar 

  • Ribelles P, Benbouziane B, Langella P, Suárez JE, Bermúdez-Humarán LG (2013) Protection against human papillomavirus type 16-induced tumors in mice using non-genetically modified lactic acid bacteria displaying E7 antigen at its surface. Appl Microbiol Biotechnol 97(3):1231–1239

    Article  CAS  Google Scholar 

  • Rocha-Ramírez LM, Pérez-Solano RA, Castañón-Alonso SL, Moreno Guerrero SS, Ramírez Pacheco A, García Garibay M, Eslava C (2017) Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages. J Immunol Res 2017:4607491

    Article  Google Scholar 

  • Sahay B, Ge Y, Colliou N, Zadeh M, Weiner C, Mila A, Owen JL, Mohamadzadeh M (2015) Advancing the use of Lactobacillus acidophilus surface layer protein A for the treatment of intestinal disorders in humans. Gut Microbes 6(6):392–397

    Article  CAS  Google Scholar 

  • Sleytr UB, Schuster B, Egelseer E-M, Pum D (2014) S-Layers: principles and applications. FEMS Microbiol Rev 38(5):823–864

    Article  CAS  Google Scholar 

  • Smit E, Oling F, Demel R, Martinez B, Pouwels PH (2001) The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding. J Mol Biol 305(2):245–257

    Article  CAS  Google Scholar 

  • Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W (2013) Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol 97(5):1941–1952

    Article  CAS  Google Scholar 

  • Vizoso Pinto MG, Gómez MR, Seifert S, Watzl B, Holzapfel WH, Franz CMAP (2009) Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol 133(1–2):86–93

    Article  CAS  Google Scholar 

  • Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74(6):1812–1819

    Article  CAS  Google Scholar 

  • Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. https://doi.org/10.1016/s0378-5173(02)00004-2

    Article  Google Scholar 

  • Zadravec P, Štrukelj B, Berlec A (2015) Heterologous surface display on lactic acid bacteria: non-GMO alternative? Bioengineered 6(3):179–183

    Article  Google Scholar 

  • Zhang X, Hu S, Du X, Li T, Han L, Kong J (2016) Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development. J Microbiol Immunol Infect 49(6):851–858

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Grants from the Universidad de Buenos Aires (UBA) (20020170200329BA) and FONCyT (PICT 1337–2017), Argentina, to MMP, as well as by a doctoral Fellowship of the National Scientific and Technical Research Council (CONICET) to TBG, and an UBA undergraduate Fellowship to MCP. MCA, DFP, SMR, and MMP are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Mercedes Palomino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordillo, T.B., Palumbo, M.C., Allievi, M.C. et al. Strategies to display heterologous proteins on the cell surface of lactic acid bacteria using as anchor the C-terminal domain of Lactobacillus acidophilus SlpA. World J Microbiol Biotechnol 36, 169 (2020). https://doi.org/10.1007/s11274-020-02945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02945-9

Keywords

Navigation