Skip to main content
Log in

Laser control of polariton using Landau–Zener–Stückelberg interferometry theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have investigated the dynamic of cooled and trapped polariton state using Landau–Zener–Stückelberg interferometry theory (LZSIT). The effects of exciton–cavity coupling and the laser cooling over the qubit dynamics are analyzed in multi-crossing scenarios, supporting some of our basic results (Kenfack et al. in Comput Condens Matter 11:47–54, 2017; Ekengoue et al. in Comput Condens Matter 14:106–113, 2018). We have performed detailed calculations of the energy eigenvalues, non-adiabatic and adiabatic transition probabilities in the framework of weak- and strong-coupling regime under the laser light. As a main result, we pointed out the braking down of the Pauli exclusion principle providing the applicability of LZSIT for the analysis of polariton’s dynamic through a model which satisfies Fermi–Dirac statistics. Moreover, we found the generation of arbitrary waveforms of interferometric signals including sinusoidal, for weak coupling and strong laser amplitude. Thus, the dynamics of the polariton induces the destruction and the construction of interferences patterns in strong coupling between cavity laser and qubit. Extremely accurate interferometric signals generation by means of geometric phase effect has been demonstrated in this work with the goal of realizing robust control of the quantum coherent states of the polaritonic system. This geometric phase enhancement, which is essentially originated from the dynamic behavior of cooled and trapped polariton, is a significant consequence of the fastest population transfer and quantized energy of the system. Therefore, the geometric phase plays a crucial role in the study of the alter crossings behavior through cooled and trapped polariton, especially in the population transfer and energy of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

    MATH  Google Scholar 

  2. A. Altland, V. Gurarie, Phys. Rev. Lett. 100(063602), 1–4 (2008)

    Google Scholar 

  3. A. Amo, J. Bloch, Comptes Rendus Phys. 17, 934–945 (2016)

    Article  ADS  Google Scholar 

  4. C. Anton, T.C.H. Liew, D. Sarkar, M.D. Martin, Z. Hatzopoulos, P.S. Eldridge, P.G. Savvidis, L. Viña, Phys. Rev. B 89, 235312 (2014)

    Article  ADS  Google Scholar 

  5. Y. Avishai, Phys. Rev. A 90(032116), 1–15 (2014)

    Google Scholar 

  6. L.I. Baihong, L.I. Yongfang, Landau–Zener tunneling in the process of sum frequency generation. In International Symposium on Photonics and Optoelectronics 92330T, ed. by Z. Zhou (Proc. of SPIE 9233, 2014), pp. 1–6

  7. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  8. R. Beals, R. Wong, Special Functions (Cambridge Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  9. M.V. Berry, Proc. R. Soc. Lond. 392(1802), 45–57 (1984)

    ADS  Google Scholar 

  10. M.V. Berry, Prod. R. Soc. Lond A. 430, 405–411 (1990)

    ADS  Google Scholar 

  11. M. Born, K. Huang, Dynamical Theory of Crystal Lattices, (Oxford University Press, New York, 1954), reprinted in 1985; Huang, K. (1951). Proc. R. Soc. London Ser. A 208, 352

  12. D. Bouwmeester, G.P. Karman, C.A. Schrama, J.P. Woerdman, Phys. Rev. A 53(2), 985–989 (1996)

    ADS  Google Scholar 

  13. I. Buluta, S. Ashhab, F. Nori, Rep. Prog. Phys. 74(104401), 1–16 (2011)

    Google Scholar 

  14. T. Chung, S.-Y. Lee, E.Y. Song, H.G. Chun, B. Lee, Sensors 11, 10907–10929 (2011)

    Google Scholar 

  15. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    ADS  Google Scholar 

  16. A. Cuevas, B. Silva et al., Sci. Adv. 4(eaa06814), 1–8 (2018)

    Google Scholar 

  17. J.E. Danga, S.C. Kenfack, L.C. Fai, J. Phys. A Math. Theor. 49, 1–16 (2016)

    Google Scholar 

  18. S.S. Demirchyan, I.Y. Chestnov, A.P. Alodjants, M.M. Glazov, A.V. Kavokin, Phys. Rev. Lett. 112(196403), 1–5 (2014)

    Google Scholar 

  19. D.P. DiVincenzo, Fortschr. Phys. 48, 771–783 (2000)

    Google Scholar 

  20. S. Dodin, A. Garmon, L. Simine, D. Segal (2014). arXiv:1401.3770v1 [cond-mat.mes-hall]: 1–10

  21. A.V. Dodonov, B. Militello, A. Napoli, A. Messina, Phys. Rev. A 93(052505), 1–9 (2016)

    Google Scholar 

  22. L. Du, Y. Hu, Z.-W. Zhou, G.-C. Guo, X. Zhou, New J. Phys. 12(063015), 1–11 (2009)

    Google Scholar 

  23. T.H. Duong, T.T. Dinh, T.H. Vo, T.T.V. Tran, A.V. Nguyen, J. Phys. Conf. Ser. 865(012007), 1–8 (2017)

    Google Scholar 

  24. C.M. Ekengoue, S.C. Kenfack, A.J. Fotue, M.F.C. Fobasso, G.N. Bawe Jr., L.C. Fai, Comput. Condens. Matter 14, 106–113 (2018)

    Google Scholar 

  25. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions (The Bateman Manuscript Project Vol. 2) (McGraw-Hill, New York, 1953).

  26. G. Falci, R. Fazio, G. Palma, J. Siewert, V. Vedral, Nature (London) 407, 355–358 (2000)

    ADS  Google Scholar 

  27. P. Forn-Diaz, J. Lisenfeld, D. Marcos, J.J. Garcia-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105(237001), 1–6 (2010)

    Google Scholar 

  28. Fujii, K. (2014). arXiv:13O1.3585v3n

  29. K. Fujii, T. Suzuki, Int. J. Geom. Methods Mod. Phys. 8, 8 (2011)

    Google Scholar 

  30. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779–6782 (1998)

    Article  ADS  Google Scholar 

  31. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, Products (Academic Press, New York, 1994)

    MATH  Google Scholar 

  32. M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  33. M. Grifoni, P. Hänggi, Phys. Rep. 304, 229–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Hicke, L.F. Santos, M.I. Dykman (2005). arXiv:quant-ph/0511264v1, pp. 1–7

  35. J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuat. B Chem. 54, 3–15 (1999)

    Article  Google Scholar 

  36. Z. Hradil, A. Quattropani, V. Savona, P, Schwendimann. Journal of Statistical Physics 76, 299–305 (1994)

    Article  ADS  Google Scholar 

  37. A. Izmalkov, M. Grajcar, E. Il’ichev, Th Wagner, H.-G. Meyer, A. Yu, Phys. Rev. Lett. 93, 037003 (2004)

    Article  ADS  Google Scholar 

  38. A. Izmalkov, A. Izmalkov, S.H.W. van der Ploeg, S.N. Shevchenko, M. Grajcar, E. Il’ichev, U. Hubner, A.N. Omelyanchouk, H.G. Meyer, Phys. Rev. Lett. 101, 017003 (2008)

    Article  ADS  Google Scholar 

  39. D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 82, 1975 (1999)

    Article  ADS  Google Scholar 

  40. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  41. A. Joye, G. Mileti, C.-E. Pfister, Phys. Rev. A 44, 4280–4295 (1991)

    Article  ADS  Google Scholar 

  42. T. Jun Park, Bull. Korean Chem. Soc. 11(26), 1735–1737 (2005)

    Google Scholar 

  43. Y. Kami, E.E. Nikitin, J. Chem. Phys. 100(2027), 2027–2033 (1994)

    ADS  Google Scholar 

  44. B.E. Kane, Nature 393, 133–137 (1998)

    Article  ADS  Google Scholar 

  45. J. Keeling, V. Gurarie, Phys. Rev. Lett. 101(033001), 1–4 (2008)

    Google Scholar 

  46. S.C. Kenfack, C.M. Ekengoue, A.J. Fotue, F.C. Fobasso, G.N. Bawe, L.C. Fai, Comput. Condens. Matter 11, 47–54 (2017)

    Article  Google Scholar 

  47. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L.O. Brien, Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  48. P.G. Lagoudakis, N.G. Berloff, New J. Phys. 19(125008), 1–9 (2017)

    Google Scholar 

  49. R.B. Laughlin, Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  ADS  Google Scholar 

  50. P.J. Leek, J.M. Fink, A. Blais, R. Bianchetti, M. Göppl, J.M. Gambetta, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, A. Wallraff, Science 318, 1889–1892 (2007)

    ADS  MathSciNet  Google Scholar 

  51. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovi, Nature 422, 412 (2003)

    ADS  Google Scholar 

  52. J. Liu, L.-B. Fu, B.-Y. Ou, S.-G. Chen, Q. Niu, (2001). arXiv:quant-ph/0105140v1 29: 1–17

  53. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K.N. Nguyen et al., Nano Lett. 15, 849–856 (2015)

    ADS  Google Scholar 

  54. R.K. Malla, E.G. Mishchenko, M.E. Raikh, (2017). arXiv:1705.05968v1 [cond-mat.mes-hall]: 1–8

  55. C.F.J. Matthews, K. Poulios, J.D.A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M.G. Thompson, J.L. O’Brien, Sci. Rep. 1539(3), 1–6 (2013)

    Google Scholar 

  56. C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995)

    ADS  MathSciNet  Google Scholar 

  57. M. Müller, S. Bounouar, K.D. Jons, M. Glassl, P. Michler, Nat. Photon 8, 224–228 (2014)

    ADS  Google Scholar 

  58. A. Nahata, R.A. Linke, T. Ishi, K. Ohashi, Opt. Lett. 28, 423–425 (2003)

    ADS  Google Scholar 

  59. K. Nakamura, Quantum Chaos, Cambridge Nonlinear Science Series 3 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  60. K. Nakamura, S.A. Rice, Phys. Rev. A 49, 2217–2219 (1994)

    ADS  Google Scholar 

  61. P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Rev. Mod. Phys. 84(1), 1–14 (2012)

    ADS  Google Scholar 

  62. F. Niemczyk, H. Deppe, E.P. Huebl, F. Menzel, M.J. Hocke, J.J. Schwarz, D. Garcia- Ripoll, T. Zueco, E. Hümmer, A. Solano et al., Nat. Phys. 6, 772–776 (2010)

    Google Scholar 

  63. A.P. Nizovtsev, S.Y. Kilin, F. Jelezko, T. Gaebal, I. Popa, A. Gruber, J. Wrachtrup, Optics and Spectrosc. 99, 233–244 (2005)

    ADS  Google Scholar 

  64. L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79, 645–648 (1997)

    ADS  Google Scholar 

  65. W.D. Oliver, Y. Yu, J.C. Lee, K.K. Berggren, L.S. Levitov, T.P. Orlando, Science 310, 1653–1657 (2005)

    ADS  Google Scholar 

  66. V.N. Ostrovsky, M.V. Volkov, J.P. Hansen, S. Selstø, Phys. Rev. B 75(014441), 1–7 (2007)

    Google Scholar 

  67. G. Pavlovic (2010). [cond-mat.other]. Université Blaise Pascal - Clermont-Ferrand II. HAL Id: tel-00632151, https://tel.archives-ouvertes.fr/tel-00632151

  68. H. Ribeiro, J.R. Petta, G. Burkard, Phys. Rev. B 82(115445), 1–8 (2010)

    Google Scholar 

  69. K. Saito, M. Wubs, S. Kohler, P. Hänggi, Y. Kayanuma (2006). arXiv:condmat/0603188v3 [cond-mat.mes-hall], pp. 1–7

  70. S. Shevchenko, S. Ashhab, F. Nori, Phys. Rep. 492, 1–30 (2010)

    Article  ADS  Google Scholar 

  71. A.V. Shytov, Phys. Rev. A 70(052708), 1–3 (2004)

    Google Scholar 

  72. M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, P. Hakonen, Phys. Rev. Lett. 96(187002), 1–4 (2006)

    Google Scholar 

  73. M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, L. Roschier, P. Hakonen, Phys. Rev. Lett. 95(206806), 1–4 (2005)

    Google Scholar 

  74. D.D. Solnyshkov, O. Bleu, G. Malpuech, Superlattices Microstruct. 83, 466–475 (2015)

    Article  ADS  Google Scholar 

  75. Sun, G-Z., Wen, X., Mao, B., Chen, J., Yu, Y., Wu, P., Han, S. (2010). Nature Communication : 1–7

  76. L. Tang, S.E. Kocabas, S. Latif, A.K. Okyay, D.-S. Ly-Gagnon et al., Nat Photonics 2, 226–229 (2008)

    Article  Google Scholar 

  77. S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, Nature 453(7193), 372–375 (2008)

    Article  ADS  Google Scholar 

  78. J.A.H. Van Nieuwstadt, M. Sandtke, R.H. Harmsen, F.B. Segerink, J.C. Prangsma et al., Phys. Rev. Lett. 97(146102), 1–4 (2006)

    Google Scholar 

  79. X. Wang, Y. Deng, Q. Li, Y. Huang, Z. Gong, K.B. Tom, J. Yao (2016). Official journal of the CIOMP 2047–7538/16. Light: Science & Applications 5, e16179: 1–6

  80. Wilczek, F. (1990). World Scientific, 5.

  81. C.M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Johansson, P. Delsing, Phys. Rev. Lett. 98(257003), 1–4 (2007)

    Google Scholar 

  82. Wolf, P., Borde, Ch. J., Clairon, A., Duchane, L., Londragn, A., Lemonde, P., Santarelli, G. et al. (2009). Doi : https://doi.org/10.1007/S1686-008-9118-5 (2009).

  83. M. Wubs, K. Saito, S. Kohler, Y. Kayanuma, P. Hänggi, New J. Phys. 7(218), 1–14 (2005)

    MathSciNet  Google Scholar 

  84. T. Xinsheng, D.-W. Zhang, Z. Zhang, Y. Yu, H. Siyuan, S.-L. Zhu, Phys. Rev. Letts. 112(027001), 1–5 (2014)

    Google Scholar 

  85. Y. Yan, B. Wu (2008). arXiv:0811.1388v1 [quant-ph]: 1–7

  86. J. Yang, S. Pang, A.N. Jordan (2017). Phys. Rev. A 96, 020301(R): 1–5

  87. H.P. Ye, H.F. Wang, S.P. Yeo, C.W. Qiu, Electromagn. Waves 136, 17–27 (2013)

    Article  Google Scholar 

  88. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, Phys. Rev. B 65(161205), 1–16 (2002)

    Google Scholar 

  89. A.V. Zayatsa, I.I. Smolyaninov, A.A. Maradudinc, Phys. Rep. 408, 131–314 (2005)

    Article  ADS  Google Scholar 

  90. C. Zener, Proc. R. Soc. London Ser. A 137, 696–702 (1932)

    ADS  Google Scholar 

  91. J. Zhang, L. Zhang, W. Xu, J. Phys. D Appl. Phys. 45(113001), 1–19 (2012)

    Google Scholar 

  92. X. Zhang, Z.W. Liu, Nat. Mater. 7, 435–441 (2008)

    ADS  Google Scholar 

  93. F. Zhou, F. Liu, L. Xiao, K. Cui, X. Feng, W. Zhang, Y. Huang, Nano-Micro Lett. 9, 1–8 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kenfack-Sadem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack-Sadem, C., Ekengoue, C.M., Danga, J.E. et al. Laser control of polariton using Landau–Zener–Stückelberg interferometry theory. Eur. Phys. J. Plus 135, 815 (2020). https://doi.org/10.1140/epjp/s13360-020-00790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00790-1

Navigation