Skip to main content
Log in

Rotating black hole with a probe string in Horndeski gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we present the effect of a probe string on the complexity of a black hole according to the CA (Complexity equals action) conjecture on Horndeski’s gravity. In our system, we consider a particle moving on the boundary of black hole spacetime in (\(2+1\))-dimensions. To obtain a dual description, we need to insertion a fundamental string on the bulk spacetime. The effect of this string is given by the Nambu–Goto term. For the Nambu–Goto term, we can analyze the time development of this system, which is affected by the parameters of Horndeski’s gravity. In our case, we show some interesting complexity properties for this gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository [Authors’ comment: 1. The datasets generated during and/or analyzed during the current study are available in the [arxiv] repository, [https://arxiv.org/abs/2005.10983]. 2. The datasets generated during and/or analyzed during the current study are the propriety of EPJP but are available from the corresponding author on reasonable request. 3. All data generated or analyzed during this study are included in this published article entitled: Rotating black hole with a probe string in Horndeski gravity with following DOI: https://doi.org/10.1140/epjp/s13360-020-00805-x [and its supplementary information files]].

References

  1. F.W. Dyson, A.S. Eddington, C. Davidson, A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of may 29, 1919. Phil. Trans. R. Soc. Lond. A 220, 291–333 (1920)

    Article  ADS  Google Scholar 

  2. B.P. Abbott et al., LIGO scientific and virgo collaborations, observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Casalino, M. Rinaldi, Testing Horndeski gravity as dark matter with hiclass. Phys. Dark Univ. 23, 100243 (2019). [arXiv:1807.01995 [gr-qc]]

    Article  Google Scholar 

  4. L. Heisenberg, A systematic approach to generalisations of general relativity and their cosmological implications. Phys. Rept. 796, 1 (2019). [arXiv:1807.01725 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Nicolis, R. Rattazzi, E. Trincherini, The Galileon as a local modification of gravity. Phys. Rev. D 79, 064036 (2009). [arXiv:hep-th/0811.2197]

    Article  ADS  MathSciNet  Google Scholar 

  6. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363 (1974)

    Article  MathSciNet  Google Scholar 

  7. J.P. Bruneton, M. Rinaldi, A. Kanfon, A. Hees, S. Schlogel, A. Fuzfa, Fab four: when John and George play gravitation and cosmology. Adv. Astron. 2012, 430694 (2012). [arXiv:1203.4446 [gr-qc]]

    Article  ADS  Google Scholar 

  8. F. A. Brito, F. F. Dos Santos, Braneworlds in Horndeski gravity, arXiv:1810.08196 [hep-th]

  9. F.F. Santos, R.M.P. Neves, F.A. Brito, Modeling dark sector in Horndeski gravity at first-order formalism. Adv. High Energy Phys. 2019, 3486805 (2019). [arXiv:1906.11821 [hep-th]]

    MathSciNet  MATH  Google Scholar 

  10. A. Cisterna, C. Erices, Asymptotically locally AdS and flat black holes in the presence of an electric field in the Horndeski scenario. Phys. Rev. D 89, 084038 (2014). [arXiv:1401.4479 [gr-qc]]

    Article  ADS  Google Scholar 

  11. A. Anabalon, A. Cisterna, J. Oliva, Asymptotically locally AdS and flat black holes in Horndeski theory. Phys. Rev. D 89, 084050 (2014). [arXiv:1312.3597 [gr-qc]]

    Article  ADS  Google Scholar 

  12. M. Bravo-Gaete, M. Hassaine, Lifshitz black holes with a time-dependent scalar field in a Horndeski theory. Phys. Rev. D 89, 104028 (2014). [arXiv:1312.7736 [hep-th]]

    Article  ADS  Google Scholar 

  13. M. Rinaldi, Black holes with non-minimal derivative coupling. Phys. Rev. D 86, 084048 (2012). [arXiv:1208.0103 [gr-qc]]

    Article  ADS  Google Scholar 

  14. C. Deffayet, X. Gao, D.A. Steer, G. Zahariade, From k-essence to generalised Galileons. Phys. Rev. D 84, 064039 (2011). [arXiv:1103.3260 [hep-th]]

    Article  ADS  Google Scholar 

  15. K. Van Acoleyen, J. Van Doorsselaere, Galileons from Lovelock actions. Phys. Rev. D 83, 084025 (2011). [arXiv:1102.0487 [gr-qc]]

    Article  ADS  Google Scholar 

  16. A.R. Gomes, L. Amendola, The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions. JCAP 1602, 035 (2016). [arXiv:1511.01004 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Rinaldi, Mimicking dark matter in Horndeski gravity. Phys. Dark Univ. 16, 14 (2017). [arXiv:1608.03839 [gr-qc]]

    Article  Google Scholar 

  18. A. Cisterna, M. Hassaine, J. Oliva, M. Rinaldi, Axionic black branes in the k-essence sector of the Horndeski model. Phys. Rev. D 96(12), 124033 (2017). [arXiv:1708.07194 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Zumalacáirregui, J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian. Phys. Rev. D 89, 064046 (2014). [arXiv:1308.4685 [gr-qc]]

    Article  ADS  Google Scholar 

  20. X.H. Feng, H.S. Liu, H. Lü, C.N. Pope, Black hole entropy and viscosity bound in Horndeski gravity. JHEP 1511, 176 (2015). [arXiv:1509.07142 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  21. F. A. Brito, F. F. Santos, Black branes in asymptotically Lifshitz spacetime and viscosity/entropy ratios in Horndeski gravity, arXiv:1901.06770 [hep-th]

  22. A. Cisterna, T. Delsate, L. Ducobu, M. Rinaldi, Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity. Phys. Rev. D 93(8), 084046 (2016). [arXiv:1602.06939 [gr-qc]]

    Article  ADS  Google Scholar 

  23. Oliver J. Tattersall, Pedro G. Ferreira, Quasinormal modes of black holes in Horndeski gravity. Phys. Rev. D 97, 104047 (2018). [arXiv:1804.08950 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  24. B.P. Abbott et al., Collaboration LIGO Scientific, Virgo, observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 241103 (2016). [arxiv:1606.04855 [gr-qc]]

    Article  ADS  Google Scholar 

  25. B.P. Abbott et al., collaboration LIGO Scientific, Virgo, observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 118, 241103 (2017). [arxiv:1706.01812 [gr-qc]]

    Google Scholar 

  26. M. Bravo-Gaete, M. Hassaine, Thermodynamics of a BTZ black hole solution with an Horndeski source. Phys. Rev. D 90(2), 024008 (2014). [arXiv:1405.4935 [hep-th]]

    Article  ADS  Google Scholar 

  27. A. Maselli, H.O. Silva, M. Minamitsuji, E. Berti, Slowly rotating black hole solutions in Horndeski gravity. Phys. Rev. D 92(10), 104049 (2015). [arXiv:1508.03044 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Hui, A. Nicolis, No-hair theorem for the Galileon. Phys. Rev. Lett. 110, 241104 (2013). [arXiv:1202.1296 [hep-th]]

    Article  ADS  Google Scholar 

  29. T.P. Sotiriou, Black holes and scalar fields. Class. Quant. Grav. 32(21), 214002 (2015). [arXiv:1505.00248 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Nagasaki, Complexity of AdS\(_5\) black holes with a rotating string. Phys. Rev. D 96(12), 126018 (2017). [arXiv:1707.08376 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Nagasaki, Complexity growth of rotating black holes with a probe string. Phys. Rev. D 98(12), 126014 (2018). [arXiv:1807.01088 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  32. J. de Boer, E. Llabrés, J.F. Pedraza, D. Vegh, Chaotic strings in AdS/CFT. Phys. Rev. Lett. 120(20), 201604 (2018). [arXiv:1709.01052 [hep-th]]

    Article  ADS  Google Scholar 

  33. A. Banerjee, A. Kundu, R. R. Poojary, Rotating Black Holes in AdS, Extremality and Chaos, [arXiv:1912.12996 [hep-th]]

  34. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle, Y. Zhao, Complexity, action, and black holes, Phys. Rev. D 93(8), 086006 (2016). [arXiv:1512.04993 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  35. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle, Y. Zhao, Holographic complexity equals bulk action? Phys. Rev. Lett. 116(19), 191301 (2016). [arXiv:1509.07876 [hep-th]]

    Article  ADS  Google Scholar 

  36. A.P. Reynolds, S.F. Ross, Butterflies with rotation and charge. Class. Quant. Grav. 33(21), 215008 (2016). [arXiv:1604.04099 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, General second order scalar-tensor theory, self tuning, and the Fab Four. Phys. Rev. Lett. 108, 051101 (2012). [arXiv:1106.2000 [hep-th]]

    Article  ADS  Google Scholar 

  38. C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, Self-tuning and the derivation of a class of scalar-tensor theories. Phys. Rev. D 85, 104040 (2012). [arXiv:1112.4866 [hep-th]]

    Article  ADS  Google Scholar 

  39. A.A. Starobinsky, S.V. Sushkov, M.S. Volkov, The screening Horndeski cosmologies. JCAP 1606(06), 007 (2016). [arXiv:1604.06085 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F.F. Rotating black hole with a probe string in Horndeski gravity. Eur. Phys. J. Plus 135, 810 (2020). https://doi.org/10.1140/epjp/s13360-020-00805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00805-x

Navigation