Skip to main content
Log in

Numerical investigation of combined heat transfer through hollow brick walls

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present study aims to investigate coupled heat transfer by natural convection, conduction and surface radiation through hollow brick walls. The numerical simulations are conducted for two typical walls built with hollow bricks in order to find the configuration that minimizes the heat gains or losses and then improves the thermal performances of the building. The outside vertical surface is submitted to an incident solar flux and outdoor environment temperature, while the inside surface is submitted to indoor environment temperature. The effects of the incident solar flux, the internal aspect ratio of hollow bricks and the thermal emissivity on the fluid flow and heat transfer through the building walls are analyzed. The results show that the hollow brick wall of type 1 improves the thermal resistance and leads to the lowest global heat transfer between the outside and inside of the building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Ascione, N. Bianco, G.M. Mauro, G.P. Vanoli, A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin. Appl. Energy 241, 331–361 (2019)

    Article  Google Scholar 

  2. F.H. Abanda, L. Byers, An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy 97, 517–527 (2016)

    Article  Google Scholar 

  3. G. Armando, B.J. Armando, V. Christian, V.H. Rangel-Hernández, J.M. Belman-Flores, Analysis of the conjugate heat transfer in a multi-layer wall including an air layer. Appl. Therm. Eng. 30, 599–604 (2010)

    Article  Google Scholar 

  4. J. Sun, L. Fang, Numerical simulation of concrete hollow bricks by the finite volume method. Int. J. Heat Mass Transf. 52, 5598–5607 (2009)

    Article  Google Scholar 

  5. M.P. Morales, M.C. Juárez, P. Munoz, J.A. Gómez, Study of the geometry of a voided clay brick using non-rectangular perforations to optimise its thermal properties. Energy Build. 43, 2494–2498 (2011)

    Article  Google Scholar 

  6. K.D. Antoniadis, M.J. Assael, C.A. Tsiglifisi, S.K. Mylona, Improving the design of Greek hollow clay bricks. Int. J. Thermophys. 33, 2274–2290 (2012)

    Article  ADS  Google Scholar 

  7. P. Principi, R. Fioretti, Thermal analysis of the application of PCM and low emissivity coating in hollow bricks. Energy Build. 51, 131–142 (2012)

    Article  Google Scholar 

  8. V.A.F. Costa, Improving the thermal performance of red clay holed bricks. Energy Build. 70, 352–364 (2014)

    Article  Google Scholar 

  9. Y. Zhang, K. Dua, J. He, L. Yang, Y. Li, S. Li, Impact factors analysis on the thermal performance of hollow block wall. Energy Build. 75, 330–341 (2014)

    Article  Google Scholar 

  10. D.L. Tang, L.P. Li, C.F. Song, W.Q. Tao, Y.L. He, Numerical thermal analysis of applying insulation material to holes in hollow brick walls by the finite volume method. Numer. Heat Transf. Part A Appl. 68, 526–547 (2015)

    Article  ADS  Google Scholar 

  11. G.Z. Shi, L.P. Li, C.F. Song, S.M. Cheng, W.Q. Tao, 3D numerical thermal optimization of the roofs constructed with cast-in situ hollow concrete floor system by finite volume method. Energy Build. 131, 142–152 (2016)

    Article  Google Scholar 

  12. G. Henrique dos Santos, M.A. Fogiatto, N. Mendes, Numerical analysis of thermal transmittance of hollow concrete blocks. J. Build. Phys. 1, 1–18 (2017)

    Google Scholar 

  13. C. Caruana, C. Grima, C. Yousif, S. Buhagiar, R. Curmi, Determination of thermal characteristics of standard and improved hollow concrete blocks using different measurement techniques. J. Build. Eng. 13, 336–346 (2017)

    Article  Google Scholar 

  14. A. Byrne, G. Byrne, A. Robinson, Compact facility for testing steady and transient thermal performance of building walls. Energy Build. 152, 602–614 (2017)

    Article  Google Scholar 

  15. M. Boukendil, A. Abdelbaki, Z. Zrikem, Numerical simulation of coupled heat transfer through double hollow brick walls: effects of mortar joint thickness and emissivity. Appl. Therm. Eng. 125, 1228–1238 (2017)

    Article  Google Scholar 

  16. Yu. Jinghua, H. Ye, X. Xinhua, J. Huang, Y. Liu, J. Wang, Experimental study on the thermal performance of a hollow block ventilation wall. Renew. Energy 122, 619–631 (2018)

    Article  Google Scholar 

  17. G. Huelsz, G. Barrios, J. Rojas, Equivalent-homogeneous-layers-set method for time dependent heat transfer through hollow block walls. Appl. Therm. Eng. 102, 1019–1023 (2016)

    Article  Google Scholar 

  18. J. Uriarte-Flores, J. Xamán, Y. Chávez, Thermal performance of walls with passive cooling techniques using traditional materials available in the Mexican market. Appl. Therm. Eng. 149, 1154–1169 (2019)

    Article  Google Scholar 

  19. E. Sassine, Y. Cherif, J. Dgheim, E. Antczak, Experimental and numerical thermal assessment of lebanese traditional hollow blocks. Int. J. Thermophys. 47, 1–21 (2020)

    Google Scholar 

  20. E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy Build. 77, 28–39 (2014)

    Article  Google Scholar 

  21. I. Axaopoulos, P. Axaopoulos, G. Panayiotou et al., Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics. Energy 90, 939–952 (2015)

    Article  Google Scholar 

  22. T. Orzechowski, M. Orzechowski, Optimal thickness of various insulation materials for different temperature conditions and heat sources in terms of economic aspect. J. Build. Phys. 41, 377–393 (2018)

    Article  Google Scholar 

  23. X. Meng, J. Du, Y. Wang et al., Thermal performance optimization of building floors under air-conditioning intermittent operation by numerical simulation. J. Build. Phys. 43, 99–120 (2019)

    Article  Google Scholar 

  24. M.F. Alsayed, R.A. Tayeh, Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings. J. Build. Eng. 22, 101–112 (2019)

    Article  Google Scholar 

  25. B. Rosti, A. Omidvar, N. Monghasemi, Optimal insulation thickness of common classic and modern exterior walls in different climate zones of Iran. J. Build. Eng. 27, 100954 (2020)

    Article  Google Scholar 

  26. H.K. Huang, Y.J. Zhou, R.D. Huang, H.J. Wu, Y.J. Sun, G.S. Huang, T. Xu, Optimum insulation thicknesses and energy conservation of building thermalinsulation materials in Chinese zone of humid subtropical climate. Sustain. Cities Soc. 52, 101840 (2020)

    Article  Google Scholar 

  27. J. Yuan, C. Farnham, K. Emura, Optimum insulation thickness for building exterior walls in 32 regions of China to save energy and reduce CO2 emissions. Sustainability 9, 1–13 (2017)

    Google Scholar 

  28. L. Derradji, K. Imessad, M. Amara, F. Boudali Errebai, A study on residential energy requirement and the effect of the glazing on the optimum insulation thickness. Appl. Therm. Eng. 112, 975–985 (2017)

    Article  Google Scholar 

  29. X. Wang, H. Yu, L. Li, M. Zhao, Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room. Energy Convers. Manag. 120, 81–89 (2016)

    Article  Google Scholar 

  30. J.W. Lei, J.L. Yang, E.H. Yang, Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Appl. Energy 162, 207–217 (2016)

    Article  Google Scholar 

  31. D. Li, Y.M. Zheng, C.Y. Liu, G.Z. Wu, Numerical analysis on thermal performance of roof contained PCM of a single residential building. Energy Convers. Manag. 100(147), 156 (2015)

    Google Scholar 

  32. Y. Zhang, Q. Wang, Impact of phase change material’s thermal properties on the thermal performance of phase change material hollow block wall. Heat Transf. Eng. 40, 1619–1632 (2019)

    Article  ADS  Google Scholar 

  33. X. Jin, M.A. Medina, X. Zhang, On the importance of the location of PCMs in building walls for enhanced thermal performance. Appl. Energy 106, 72–78 (2013)

    Article  Google Scholar 

  34. N. Zhu, N. Hu, P. Hu, F. Lei, S. Li, Experiment study on thermal performance of building integrated with double layers shape-stabilized phase change material wallboard. Energy 167, 1164–1180 (2019)

    Article  Google Scholar 

  35. Y. Gao, F. He, X. Meng, Z. Wang, M. Zhang, Yu. Hanting, W. Gao, Thermal behavior analysis of hollow bricks filled with phase-change material (PCM). J. Build. Eng. 31, 101447 (2020)

    Article  Google Scholar 

  36. A. Müslüm, B. Feyza, S. Ni, K. Hasan, PCM integrated to external building walls: an optimization study on maximum activation of latent heat. Appl. Therm. Eng. 165, 114560 (2020)

    Article  Google Scholar 

  37. M. Akiyama, Q.P. Chong, Numerical analysis of natural convection with surface radiation in a square cavity. Numer. Heat Transf. Part A 31, 419–433 (1997)

    Article  ADS  Google Scholar 

  38. D.M. Kim, R. Viskanta, Effect of wall heat conduction on natural convection heat transfer in a square enclosure. ASME J. Heat Transf. 107, 139–146 (1985)

    Article  Google Scholar 

  39. W. Zhang, C.H. Zhang, G. Xi, Conjugate conduction-natural convection in an enclosure with time-periodic sidewall temperature and inclination. Int. J. Heat Fluid Flow 3, 52–64 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Boukendil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, B., Boukendil, M., El moutaouakil, L. et al. Numerical investigation of combined heat transfer through hollow brick walls. Eur. Phys. J. Plus 135, 813 (2020). https://doi.org/10.1140/epjp/s13360-020-00840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00840-8

Navigation