Skip to main content

Advertisement

Log in

Plasma Assisted Aluminothermic Reduction of Cr and Fe Oxides from Chromium Bearing Waste

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Safe disposal and management of chromium bearing wastes are challenging tasks. Recycling of Cr and Fe metals and production of value-added products from these wastes not only reduce the environmental pollution but are also a compelling necessity. The existing techniques to reduce Cr+6 to relatively non-toxic Cr+3compound/Cr metal either generate secondary waste, involve high cost or consume huge time. In this work, an attempt is made to reduce Fe and Cr metal oxides present in the chromium bearing waste by plasma assisted aluminothermic process. Chemical composition and leachability of chromium in the waste are analyzed. Aluminothermic reaction mixture is prepared with different weight ratios of waste to aluminium powder. Thermal stability of aluminothermic mixture and ignition temperature of the aluminothermic reaction are studied by TG and DSC analyses. Plasma assisted aluminothermic process is carried out in an argon environment at an atmospheric pressure. The products obtained from the waste are metallic mixture, slag and deposited/evaporated powder. Experiments are carried out at two different plasma powers and processing times. Slag and deposited powders do not contain Cr and Fe. The metallic fraction obtained contains Fe and Cr metals and AlFe3 alloy. This process can be a suitable method to treat chromium bearing waste effectively without producing toxic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yogeshwaran V, Priya AK (2016) Removal of hexavalent chromium (Cr6+) using different natural adsorbents-a review. J Chromatogr Sep Technol. https://doi.org/10.4172/2157-7064.1000392

    Article  Google Scholar 

  2. Karale RS, Wadkar DV, Nangare PB (2007) Removal and recovery of hexavalent chromium from industrial waste water by precipitation with due consideration to cost optimization. J Environ Res Dev 2(2):209–217

    CAS  Google Scholar 

  3. Apte AD, Tare V, Bose P (2006) Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2005.07.057

    Article  PubMed  Google Scholar 

  4. Spreitzer D, Schenk J (2019) Reduction of iron oxides with hydrogen-a review. Steel Res Int 90(10):1900108

    Article  Google Scholar 

  5. Maroufi S, Ciezki G, Jahanshahi S, Ostrovski O (2016) Carbothermal reduction of iron and silicon oxides in ironstone ore. Miner process extr metall 125(2):86–94

    Article  CAS  Google Scholar 

  6. EI-Sadek MH, EI-Barawy, Morsi IM, (2019) Production of calcium metal by aluminothermic reduction of Egyptian limestone ore. The Can J Metall Mater Sci 58(2019):213–222

    Google Scholar 

  7. Juaez R, Flores A, Ochoa R, Martinez L, Torres J, Reyes A (2017) Preparation of Al–Sr master alloy by the aluminothermic reduction of SrO using aluminum scrap at pilot plant scale. Matall Res Technol 1145:512

    Google Scholar 

  8. Vedmid’ LB, Krasikow SA, Zhilina EM, Nikitina EV, Evdokimova IV, Merkushev AG (2018) Evolution of phase formation during the aluminothermic reduction of titanium and zirconium from oxides. Rus Metall 2018(8):733–736

    Article  Google Scholar 

  9. Mei J, Halldearn RD, Xiao P (1999) Mechanisms of the aluminium-iron oxide thermite reaction. Scr Mater. https://doi.org/10.1016/S1359-6462(99)00148-7

    Article  Google Scholar 

  10. Derin B, Erçayhan S, Yücel O (2004) Effects of charge components on reduction of chromite concentrates by aluminothermic process. Proc Tenth Int Ferroalloys Congr 1:4

    Google Scholar 

  11. Wenzel BM, Zimmer TH, Fernandez CS et al (2013) Aluminothermic reduction of Cr2O3 contained in the ash of thermally treated leather waste. Braz J Chem Eng 30(1):141–154

    Article  CAS  Google Scholar 

  12. Gomez E, Rani DA, Cheeseman CR et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.04.017

    Article  PubMed  Google Scholar 

  13. Safa S, Soucy G (2014) Liquid and solution treatment by thermal plasma: a review. Int J Environ Sci Technol 11(4):1165–1188

    Article  Google Scholar 

  14. Rath SS, Nayak P, Mukherjee PS et al (2012) Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching-a response surface modeling approach. Waste Manag. https://doi.org/10.1016/j.wasman.2011.11.001

    Article  PubMed  Google Scholar 

  15. Saravanakumar R, Ramachandran K, Laly LG, Ananthapadmanabhan PV, Yugeswaran S (2018) Plasma assisted synthesis of γ-alumina from waste aluminium dross. Waste Manag. https://doi.org/10.1016/j.wasman.2018.05.005

    Article  PubMed  Google Scholar 

  16. Changming D, Chao S, Gong X, Ting W, Xiange W (2018) Plasma methods for metals recovery from metal-containing waste. Waste Manag. https://doi.org/10.1016/j.wasman.2018.04.026

    Article  PubMed  Google Scholar 

  17. Prado ESP, Miranda FS, Petraconi G, JrAJ Potiens (2020) Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2019.108625

    Article  Google Scholar 

  18. Messerle VE, Mosse AL, Ustimenkod AB (2018) Processing of biomedical waste in plasma gasifier. Waste Manag 79:791–799

    Article  CAS  Google Scholar 

  19. Li J, Liu K, Yan S, Li Y, Han D (2016) Application of thermal plasma technology for the treatment of solid wastes in China: an overview. Waste Manag 58:260–269

    Article  CAS  Google Scholar 

  20. Anakhov SV, Matushkin AV, Dorozhkin EM, Lyzhin AI, Pyckin YA (2019) Study of plasma incineration processes in ecological waste recycling technologies. EurAsian J BioSci 13(2):1785–1789

    CAS  Google Scholar 

  21. Dishwar RK, Agrawal S, Mandal AK, Sinha OP (2020) Smelting process of chromite ore fines to produce crude Fe–Cr–Ni–N Alloy. Trans Indian Inst Met. https://doi.org/10.1007/s12666-020-01861-8

    Article  Google Scholar 

  22. Sabat KC, Murphy AB (2017) Hydrogen plasma processing of iron ore. Metall Mater Trans B. https://doi.org/10.1007/s11663-017-0957-1

    Article  Google Scholar 

  23. Sabat KC, Rajput P, Paramguru RK, Bhoi B, Mishra BK (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 2014(34):1–23

    Article  Google Scholar 

  24. Yugeswaran S, Ananthapadmanabhan PV, Kumaresan L, Kuberan A, Sivakumar S, Shanmugavelayutham G, Ramachandran K (2018) Synthesis of zirconium nitride from zircon sand by transferred arc plasma assisted carbothermal reduction and nitridation process. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.05.109

    Article  Google Scholar 

  25. Taylor PR, Wang W (2002) A laboratory investigation of the reduction of chromium oxide by a reverse-polarity DC plasma-driven molten oxide electrolysis process. Plasma Chem Plasma Process. https://doi.org/10.1023/A:1015317116090

    Article  Google Scholar 

  26. de Brito RA, Medeiros FFP, Gomes UU et al (2008) Production of tantalum by aluminothermic reduction in plasma reactor. Int J Refract Metals Hard Mater. https://doi.org/10.1016/j.ijrmhm.2007.09.008

    Article  Google Scholar 

  27. Shinoda K, Murakami H, Sawabe Y, Saegusa K (2012) Ultrafast production of silicon via aluminothermic reduction of tetrachlorosilane in a thermal plasma jet. Chem Eng J. https://doi.org/10.1016/j.cej.2012.05.093

    Article  Google Scholar 

  28. Nelson LR (1996) The preparation of chromium metal by a sealed, cold-hearth, plasma-assisted aluminothermic method. J South Afr Inst Min Metall 96(4):135–144

    CAS  Google Scholar 

  29. USEPA (1992) Method 1311 toxicity characteristic leaching procedure. SW-846 test methods eval. Solid Waste, Phys Methods

  30. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin–Elmer Corp: Phys Electronics Division, Eden Prairie, Minnesota, 261

  31. Standards for discharge of trade effluent (TNPCB B.P. Ms. No. 30 Dated: 21.02.1984). Tamilnadu Pollution Control Board (TNPCB & YOU). January 2017, https://tnpcb.gov.in/pdf/tnpcb_you2013.pdf

  32. Sarker MSR, Alam MZ, Qadir MR (2015) Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process. Int J Miner Metall Mater. https://doi.org/10.1007/s12613-015-1090-2

    Article  Google Scholar 

  33. Mei J, Halldearn RD, Xiao P (1999) Mechanisms of the aluminium-iron oxide thermite reaction. Scr Mater 41(5):541–548

    Article  CAS  Google Scholar 

  34. Yanling Z, Tuo W, Xinlei J, Wenming G (2017) Three different methods for smelting treatment of stainless steel dust. Metall Res Technol 114(2):207

    Article  Google Scholar 

  35. Alberto EAN, Marcelo BM, Cyro T, Dener MdS (2010) Effect of slag composition on iron nuggets formation from carbon composite pellets. Mater Res 13(2):191–195

    Article  Google Scholar 

  36. Turnbull AG, Wadsley MW (1988) The CSIRO Thermochemistry System, version 5. IMEC, Australia

    Google Scholar 

Download references

Acknowledgements

Financial supports from University Grants Commission, Department of Science and Technology and Board of Research in Nuclear Sciences, Government of India are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramachandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, R., Ramachandran, K. & Padmanabhan, P.V.A. Plasma Assisted Aluminothermic Reduction of Cr and Fe Oxides from Chromium Bearing Waste. Plasma Chem Plasma Process 41, 155–169 (2021). https://doi.org/10.1007/s11090-020-10131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10131-w

Keywords

Navigation