Skip to main content
Log in

Structural, optical and junction characteristics of pyrazolo pyridine derivatives

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Two pyridine derivatives, 6-(2-chlorophenyl)-2,3-dihydro-1-methyl-3-oxo-2-phenyl-1H-pyrazolo[4,3-b]pyridine-5-carbonitrile (C1) and 6-(4-chlorophenyl)-2,3-dihydro-1-methyl-3-oxo-2-phenyl-1H-pyrazolo[4,3-b] pyridine-5-carbonitrile (C2) are prepared and characterized. Different techniques were applied to confirm their molecular structures. The thermal, structural, optical and diode characteristics of the two pyridine derivatives are reported. X-ray diffraction (XRD) patterns of C1 and C2 in powder form reveal monoclinic polycrystalline nature. The optical functions of C1 and C2 films are calculated from the transmittance and reflectance spectra measured over the spectral range 200–2500 nm. Two indirect allowed optical energy gaps were estimated; 2.55 and 3.13 eV for C1 and 2.7 and 3.27 eV for C2. Thin films of the two compounds were deposited onto p-Si substrates for fabricating heterojunctions. The diode ideality factor and barrier height of both devices were calculated. In addition, Norde's function was used to determine the important parameters of the devices. At relatively high voltage, the conduction mechanism is described by space charge limited current in both devices. The conduction of the device based on C1 and C2 compounds are due to pool–Frenkel and Schottky mechanisms. The data at reverse biasing are also analyzed and estimated. The device based on C1 compound did not give any response to light, while that based on C2 can used as photosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bufon, C.C.B., Espinoza, J.D.A., Thurmer, D.J., Bauer, M., Deneke, C., Zschieschang, U., Klauk, H., Schmidt, O.G.: Hybrid Organic/Inorganic molecular heterojunctions based on strained nanomembranes. Nano Lett. 11, 3727–3733 (2011)

    ADS  Google Scholar 

  • Chen, H.Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y., Li, G.: Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009)

    ADS  Google Scholar 

  • Clercq, E.D.: Recent highlights in the development of new antiviral drugs. Curr. Opin. Microbiol. 8, 552–560 (2005)

    Google Scholar 

  • Eizuru, Y.: Development of new antivirals for herpesviruses. Antivir. Chem. Chemother. 14, 299–308 (2003)

    Google Scholar 

  • Elahi, A., Sayyad, M.H., Karimov, Kh.S., Zakaullah, Kh., Saleem, M.: The photo-electrical behavior of n-Si/Orange Dye, Vinyl-EthynylTrimethyl-Piperidole/Conductive glass electrochemical sensor. J. Optoelectron. Adv. Mat. Rapid Com. 1, 333–338 (2007)

    Google Scholar 

  • El-Menyawy, E.M., Zedan, I.T.: Optical properties and device characteristics of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl) acetonitrile thin films for photodiode applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 810–816 (2015)

    ADS  Google Scholar 

  • El-Menyawy, E.M., Zedan, I.T., Azab, A.A.: One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications. J. Alloys Compd. 695, 3429–3434 (2017)

    Google Scholar 

  • El-Taweel, F.M.A., Elagamey, A.A.: New and facile synthesis of substituted Pyrrole, Pyridine, Pyrazolo[4,3-b] Pyridine, Pyrano[3,2-c] Quinoline Napthopyran, Naphthodipyran and Coumarin Derivatives. Int. J. Org. Chem. 3, 58–70 (2013)

    Google Scholar 

  • Golubev, A.S., Starostin, G.S., Ghunikhin, K.S., Peregudov, A.S., Rodygin, K.C., Rubtsova, S.A., Slepukhin, P.A., Kuchin, A.V., Chkamokov, N.D.: Synthesis of new fluorine- containing pyrazolo-[3,4–6] pyridineones as promising drug precursors. Russ. Chem. Bull. 60, 733–745 (2011)

    Google Scholar 

  • Halder, N.N., Biswas, P., Kundu, S., Banerji, P.: Au/p-Si Schottky junction solar cell: effect of barrier height modification by InP quantum dots. Energy Mat. Sol. Cells 132, 230–236 (2015)

    Google Scholar 

  • Hoven, C.V., Garcia, A., Bazan, G.C., Nguyen, T.Q.: Recent applications of conjugated Polyelectrolytes in Optoelectronic Devices. Adv. Mater. 20, 3793–3810 (2008)

    Google Scholar 

  • Kacke, P., Detchprohm, T., Hiramutsu, K., Sawaki, N.: Schottky barrier on n-type GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 63, 2676–2678 (1993)

    ADS  Google Scholar 

  • Khan, S.M., Kaur, M., Heflin, J.R., Sayyad, M.H.: Fabrication and characterization of ZnTTP-PCBM bulj heterojunction (BHJ) solar cells. J. Phys. Chem. Solids 72, 1430–1435 (2011)

    ADS  Google Scholar 

  • Kim, C.H., Kymissis, I.: Graphene–organic hybrid electronics,. J. Mater. Chem. C 5, 4598–4613 (2017)

    Google Scholar 

  • Laugier, J., Bochu, B.: ENSP/Laboratoire Des Matériaux Du Génie Phys. BP 46, 38042 (2004)

  • Mamolo, M.G., Zampieri, D., Falagiani, V., Vio, L., Fermeglia, M., Ferrone, M., Pricl, S., Banfi, E., Scialino, G.: Antifungal and antimycobacterial activity of new N1-[1-aryl-2-(1Himidazol-1-yl and 1H–1, 2, 4-triazol-1-yl)-ethylidene]-pyridine-2-carboxamidrazone derivatives: a combined experimental and computational approach. Arkivoc 5, 231–250 (2004)

    Google Scholar 

  • Muhammad, F.F., Sulaiman, K.: Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films–Alq3 and Gaq3 as examples. Measurement 44, 1468–1474 (2011)

    Google Scholar 

  • Muhammad, F.F., Hapip, A.I.A., Sulaiman, K.: Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis. J. Organomet. Chem. 695, 2526–2531 (2010)

    Google Scholar 

  • Muhammad, F.F., Yahya, M.Y., Ketuly, K.A., Muhammad, A.J., Sulaiman, K.: A study on the spectroscopic, energy band, and optoelectronic properties of α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium blends; DH6T/Gaq3 composite system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 169, 144–151 (2016)

    ADS  Google Scholar 

  • Norde, H.: A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    ADS  Google Scholar 

  • Pankove, J.I.: Optical Processes in Semiconductors. Prentice-Hall, New Jersey (1971)

    Google Scholar 

  • Paronikyan, E.G., Noravyan, A.S., Dzhagatspany, I.A., Nazaryan, I.M., Paronikyan, R.G.: Synthesis and anticovulsant activity of isothiazolo-[5,4-b]-pyrano (thiopyrano)-[4,3-d]-pyridine and isothiazolo [4,5-b]-2,7-naphthyridine derivatives. Pharm. Chem. J. 36, 465–467 (2002)

    Google Scholar 

  • Patel, N.B., Agravat, S.N.: Synthesis and antimicrobial studies of new pyridine derivatives. Chem. Heterocycl. Compd. 45, 1343–1353 (2009)

    Google Scholar 

  • Patel, N.B., Agravat, S.N., Shaikh, F.M.: Synthesis and antimicrobial activity of new pyridine derivatives-I. Med. Chem. Res. 20, 1033–1041 (2011)

    Google Scholar 

  • Rhoderick, E.H., Williams, R.H.: Metal-Semiconductor Contacts. Clarendon Press, Oxford University Press, Oxford, Buckingham (1988)

    Google Scholar 

  • Rodriguez-Carvajal J.: Abstracts of the satellite meet on powder diffraction of the XV congress of the IUCr, Toulouse, France (1990)

  • Salassa, L., Garino, C., Albertino, A., Volpi, G., Nervi, C., Gobetto, R., Hardcastle, K.I.: Computational and spectroscopic studies of new Rhenium(I) complexes containing Pyridylimidazo[1,5-a]pyridine Ligands: charge transfer and dual emission. Organometallic 27, 1427–1435 (2008)

    Google Scholar 

  • Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

    ADS  Google Scholar 

  • Srivastava, A., Pandeya, S.N.: “Indole” a versatile nucleuse in pharmaceutical field. Int. J. Curr. Pharm. Rev. Res. 4, 5–8 (2011)

    Google Scholar 

  • Swanepoel, R.: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16, 1214 (1983)

    ADS  Google Scholar 

  • Tauc, J., Menth, A.J.: States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

    ADS  Google Scholar 

  • Tolansky, S.: Multiple-Beam Interference Microscopy of Metals. Academic Press, London (1980)

    Google Scholar 

  • Wemple, S.H., Didomenico, M.: Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B 3, 1338–1351 (1971)

    ADS  Google Scholar 

  • Zedan, I.T., El-Ghamaz, N.A., El-Menyawy, E.M.: Geometrical and crystal structures, optical absorption and device characterization of N-(5-{[antipyrinyl-hydrazono]-cyanomethyl}-[1,3,4]thiadiazol-2-yl)-enzamide. Mat. Sci. Semicond. Process. 39, 408–415 (2015)

    Google Scholar 

  • Zedan, I.T., El-Taweel, F.M.A., Abu El-Enein, R.A.N., Nawar, H.H., El-Menyawy, E.M.: Optical properties and junction characteristics of 6-(5-Bromothiohen-2-yl)-2,3-Dihydro-1-Methyl-3-Oxo-2-Phenyl-1H-Pyrazolo[4,3-b]Pyridine-5-Carbonitrile Films. J. Electron. Mat. 45, 5928–5935 (2016)

    Google Scholar 

  • Zedan, I.T., El-Menyawy, E.M., Mansour, A.M.: Physical Characterizations of 3-(4-Methyl Piperazinylimino Methyl) Rifampicin Films for Photodiode Applications. Silicon 11, 1693–1699 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Zedan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zedan, I.T., El-Taweel, F.M.A. & El-Menyawy, E.M. Structural, optical and junction characteristics of pyrazolo pyridine derivatives. Opt Quant Electron 52, 459 (2020). https://doi.org/10.1007/s11082-020-02576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02576-2

Keywords

Navigation