Skip to main content
Log in

Synthesis of 4-alkylaminoimidazo[1,2-a]pyridines linked to carbamate moiety as potent α-glucosidase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this work, various imidazo[1,2-a]pyridines linked to carbamate moiety were designed, synthesized, and evaluated for their α-glucosidase inhibitory activity. Among synthesized compounds, 4-(3-(tert-Butylamino)imidazo[1,2-a]pyridin-2-yl)phenyl p-tolylcarbamate (6d) was the most potent compound (IC50 = 75.6 µM) compared with acarbose as the reference drug (IC50 = 750.0 µM). Kinetic study of compound 6d indicated a competitive inhibition. Also, the molecular docking study suggested desired interactions with the active site residues. In particular, hydrogen bonds and electrostatic interactions constructed by compound 6d afforded well-oriented conformation in the 3A4A active site.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C (2005) α-Glucosidase inhibitors for patients with type 2 diabetes: results from a cochrane systematic review and meta-analysis. Diabetes Care 28(1):154–163. https://doi.org/10.2337/diacare.28.1.154

    Article  PubMed  Google Scholar 

  2. van de Laar FA (2008) Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc Health Risk Manag 4(6):1189–1195. https://doi.org/10.2147/vhrm.s3119

    Article  PubMed  PubMed Central  Google Scholar 

  3. Holman N, Young B, Gadsby R (2015) Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet Med 32(9):1119–1120. https://doi.org/10.1111/dme.12791

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Ma S (2017) Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem 12(11):819–829. https://doi.org/10.1002/cmdc.201700216

    Article  CAS  PubMed  Google Scholar 

  5. Dhameja M, Gupta P (2019) Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: an overview. Eur J Med Chem 176:343–377

    Article  CAS  Google Scholar 

  6. Saeedi M, Hadjiakhondi A, Nabavi SM, Manayi A (2017) Heterocyclic compounds: effective α-amylase and α-glucosidase inhibitors. Curr Top Med Chem 17(4):428–440

    Article  CAS  Google Scholar 

  7. Gruner SAW, Locardi E, Lohof E, Kessler H (2002) Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds. Chem Rev 102(2):491–514. https://doi.org/10.1021/cr0004409

    Article  CAS  PubMed  Google Scholar 

  8. Bagri P, Chester K, Khana W, Ahmad S (2017) Aspects of extraction and biological evaluation of naturally occurring sugar-mimicking sulfonium-ion and their synthetic analogues as potent α-glucosidase inhibitors from Salacia: a review. RSC Adv 7(54):28152–28185. https://doi.org/10.1039/C7RA02955A

    Article  Google Scholar 

  9. Yin N, Zhang W, Feng F, Zhang Y, Kang W (2014) α-Glucosidase inhibitors isolated from medicinal plants. Food Sci Hum Wellness 3(3–4):136–174. https://doi.org/10.1016/j.fshw.2014.11.003

    Article  Google Scholar 

  10. Liu H, Sim L, Rose DR, Pinto BM (2006) A new class of glucosidase inhibitor: analogues of the naturally occurring glucosidase inhibitor salacinol with different ring heteroatom substituents and acyclic chain extension. J Org Chem 71(8):3007–3013. https://doi.org/10.1021/jo052539r

    Article  CAS  PubMed  Google Scholar 

  11. Hameed S, Kanwal Seraj F, Rafique R, Chigurupati S, Wadood A, Ur Rehman A, Venugopal V, Salar U, Taha M, Khan KM (2019) Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: structure–activity relationship, molecular docking, and kinetic studies. Eur J Med Chem 18:111677. https://doi.org/10.1016/j.ejmech.2019.111677

    Article  CAS  Google Scholar 

  12. Xu XT, Deng XY, Chen J, Liang QM, Zhang K, Li DL, Wu PP, Zheng X, Zhou RP, Jiang ZY, Ma AJ, Chen WH, Wang SH (2019) Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. Eur J Med Chem 189:112013. https://doi.org/10.1016/j.ejmech.2019.112013

    Article  CAS  PubMed  Google Scholar 

  13. Saeedi M, Mohammadi-Khanaposhtani M, Asgari MS, Eghbalnejad N, Imanparast S, Faramarzi MA, Larijani B, Mahdavi M, Akbarzadeh T (2019) Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorg Med Chem 27(23):115148. https://doi.org/10.1016/j.bmc.2019.115148

    Article  CAS  PubMed  Google Scholar 

  14. Kaur R, Palta K, Kumar M (2019) Hybrids of isatin-pyrazole as potential α-glucosidase inhibitors: synthesis, biological evaluations and molecular docking studies. ChemistrySelect 4(45):13219–13227. https://doi.org/10.1002/slct.201903418

    Article  CAS  Google Scholar 

  15. Yousuf H, Shamim S, Khan KM, Chigurupati S, Kanwal Hameed S, Khan MN, Taha M, Arfeen M (2020) Dihydropyridines as potential α-amylase and α-glucosidase inhibitors: synthesis, in vitro and in silico studies. Bioorg Chem 96:103581. https://doi.org/10.1016/j.bioorg.2020.103581

    Article  CAS  PubMed  Google Scholar 

  16. Rafique R, Khan KM, Kanwal A, Chigurupati S, Wadood A, Ur Rehman A, Karunanidhi A, Hameed S, Taha M, al-Rashida M (2020) Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorg Chem 94:103195. https://doi.org/10.1016/j.bioorg.2019.103195

    Article  CAS  PubMed  Google Scholar 

  17. Pogaku V, Gangarapu K, Basavoju S, Tatapudi KK, Katragadda SB (2019) Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg Chem 93:103307. https://doi.org/10.1016/j.bioorg.2019.103307

    Article  CAS  PubMed  Google Scholar 

  18. Taha M, Alshamrani FJ, Rahim F, Hayat S, Ullah H, Zaman K, Imran S (2019) Synthesis of novel triazinoindole-based thiourea hybrid: a study on α-glucosidase inhibitors and their molecular docking. Molecules 24(21):3819. https://doi.org/10.3390/molecules24213819

    Article  CAS  PubMed Central  Google Scholar 

  19. Taha M, Ismail NH, Imran S, Ainaa I, Selvaraj M, Syukri baharudin M, Ali M, Mohammed Khan K, Uddin N (2017) Synthesis of 2-phenyl-1H-imidazo[4,5-b]pyridine as type 2 diabetes inhibitors and molecular docking studies. Med Chem Res 26(5):916–928. https://doi.org/10.1007/s00044-017-1806-0

    Article  CAS  Google Scholar 

  20. Deep A, Bhatia RK, Kaur R, Kumar S, Jain UK, Singh H, Batra S, Kaushik D, Deb PK (2017) Imidazo[1,2-a]pyridine scaffold as prospective therapeutic agents. Curr Top Med Chem 17(2):238–250. https://doi.org/10.2174/1568026616666160530153233

    Article  CAS  PubMed  Google Scholar 

  21. Goel R, Luxami V, Paul K (2016) Imidazo[1,2-a]pyridines: promising drug candidate for antitumor therapy. Curr Top Med Chem 16(30):3590–3616. https://doi.org/10.2174/1568026616666160414122644

    Article  CAS  PubMed  Google Scholar 

  22. Gueiffier C, Gueiffier A (2007) Recent progress in the pharmacology of imidazol[1,2-a]pyridines. Mini Rev Med Chem 7(9):888–899. https://doi.org/10.2174/138955707781662645

    Article  PubMed  Google Scholar 

  23. Yu Y, Han Y, Zhang F, Gao Z, Zhu T, Dong S, Ma M (2020) Design, synthesis, and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3K/mTOR dual inhibitors. J Med Chem 63(6):3028–3046. https://doi.org/10.1021/acs.jmedchem.9b01736

    Article  CAS  PubMed  Google Scholar 

  24. Ramya PVS, Guntuku L, Angapelly S, Digwal CS, Lakshmi UJ, Sigalapalli DK, Babu BN, Naidu VGM, Kamalac A (2018) Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur J Med Chem 143:216–231. https://doi.org/10.1016/j.ejmech.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  25. Chitti S, Singireddi SR, Reddy PSK, Trivedi P, Bobde Y, Kumar C, Rangan K, Ghosh B, Sekhar KVGC (2019) Design, synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6 (1,2,3,6-tetrahydropyridin-4-yl)imidazo[1,2-a]pyridine analogues as antiproliferative agents. Bioorg Med Chem Lett 29(18):2551–2558. https://doi.org/10.1016/j.bmcl.2019.08.013

    Article  CAS  PubMed  Google Scholar 

  26. Wang A, Lv K, Li L, Liu H, Tao Z, Wang B, Liu M, Ma C, Ma X, Han B, Wang A, Lu Y (2019) Design, synthesis and biological activity of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides as new antitubercular agents. Eur J Med Chem 178:715–725. https://doi.org/10.1016/j.ejmech.2019.06.038

    Article  CAS  PubMed  Google Scholar 

  27. Zhou S, Chen G, Huang G (2018) Design, synthesis and biological evaluation of imidazo[1,2-a]pyridine analogues or derivatives as anti-helmintic drug. Chem Biol Drug Des 93(4):503–510. https://doi.org/10.1111/cbdd.13441

    Article  CAS  PubMed  Google Scholar 

  28. Prieto-Martínez FD, López-López E, Juárez-Mercado KE, Medina-Franco JL (2019) Silico drug design: repurposing techniques and methodologies. In: In Roy K (ed) Computational drug design methods-current and future. Elsevier, Amsterdam, pp 19–44

    Google Scholar 

  29. Popović-Djordjević JB, Jevtić II, Grozdanić ND, Šegan SB, Zlatović MV, Ivanović MD, Stanojković TP (2017) α-Glucosidase inhibitory activity and cytotoxic effects of some cyclic urea and carbamate derivatives. J Enzyme Inhib Med Chem 32(1):298–303. https://doi.org/10.1080/14756366.2016.1250754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saeedi M, Mohammadi-Khanaposhtani M, Pourrabia P, Razzaghi N, Ghadimi R, Imanparast S, Faramarzi MA, Bandarian F, Esfahani EN, Safavi M, Rastegar H, Larijani B, Mahdavi M, Akbarzadeh T (2019) Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg Chem 83:161–196. https://doi.org/10.1016/j.bioorg.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  31. Abuelizz HA, Iwana NANI, Ahmad R, Anouar EH, Marzouk M, Al-Salahi R (2019) Synthesis, biological activity and molecular docking of new tricyclic series as α-glucosidase inhibitors. BMC Chem 13:52. https://doi.org/10.1186/s13065-019-0560-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ali MY, Kim DH, Seong SH, Kim HR, Jung HA, Choi JS (2017) α-Glucosidase and protein tyrosine phosphatase 1B inhibitory activity of plastoquinones from marine brown alga Sargassum serratifolium. Mar Drugs 15:368. https://doi.org/10.3390/md15120368

    Article  CAS  PubMed Central  Google Scholar 

  33. Medina-Franco JL, Naveja JJ, López-López E (2019) Reaching for the bright StARs in chemical space. Drug Discov Today 24(11):2162–2169. https://doi.org/10.1016/j.drudis.2019.09.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from Tehran University of Medical Sciences with Project No. 98-03-33-43696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahmineh Akbarzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to the memory of our unique teacher in Chemistry and Medicinal Chemistry, Professor Abbas Shafiee (1937–2016).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, M., Raeisi-Nafchi, M., Sobhani, S. et al. Synthesis of 4-alkylaminoimidazo[1,2-a]pyridines linked to carbamate moiety as potent α-glucosidase inhibitors. Mol Divers 25, 2399–2409 (2021). https://doi.org/10.1007/s11030-020-10137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10137-8

Keywords

Navigation