Skip to main content
Log in

Injectable and Cryopreservable MSC-Loaded PLGA Microspheres for Recovery from Chemically Induced Liver Damage

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Biodegradable porous microspheres, which were initially used as supports for cell growth, are known to have the advantages of maintaining a differentiated cell phenotype and allowing for cell expansion owing to their large surface area. The use of porous microspheres ensures good retention of engrafted cells as platforms for cell delivery. In this study, injectable and porous poly(D, L-lactic-co-glycolic acid) (PLGA) microspheres were fabricated using a microfluidic system. These microspheres had a relatively uniform size and a porous and interconnected internal structure. The prepared PLGA microspheres were used as stem cell carriers for therapy. Here, we demonstrated the feasibility of mesenchymal stem cell (MSC)-loaded microspheres as cell therapy agents for liver damage. The results obtained from a chemically induced liver damage model showed that MSC-loaded microspheres effectively promoted liver recovery. These findings clearly show the feasibility of using injectable microspheres for the therapy and regeneration of tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Jaiswal, S. E. Haynesworth, A. I. Caplan, and S. P. Bruder, J. Cellular Biochemistry, 64, 295 (1997).

    CAS  Google Scholar 

  2. S. P. Bruder and B. S. Fox, Clin. Orthop. Relat. Res., 367 Suppl, S68 (1999).

    Google Scholar 

  3. C. W. Patrick, Anat. Rec., 263, 361 (2001).

    CAS  Google Scholar 

  4. C. W. Patrick, Surg. Oncol., 19, 302 (2000).

    Google Scholar 

  5. L. C. Amado, A. P. Saliaris, K. H. Schuleri, M. St. John, J.-S. Xie, S. Cattaneo, D. J. Durand, T. Fitton, J. Q. Kuang, G. Stewart, S. Lehrke, W. W. Baumgartner, B. J. Martin, A. W. Heldman, and J. M. Hare, Proc. Natl. Acad. Sci., U.S.A., 102, 11474 (2005).

    CAS  Google Scholar 

  6. A. W. Heldman and J. M. Hare, J. Mol. Cell. Cardiol., 44, 473 (2008).

    CAS  Google Scholar 

  7. D. Luger, M. J. Lipinski, P. C. Westman, D. K. Glover, J. Dimastromatteo, J. C. Frias, M. T. Albelda, S. Sikora, A. Kharazi, G. Vertelov, R. Waksman, and S. E. Epstein, Circ. Res., 120, 1598 (2017).

    CAS  Google Scholar 

  8. K. D. Lee, T. K. Kuo, J. Whang-Peng, Y. F. Chung, C. T. Lin, S. H. Chou, J. R. Chen, Y. P. Chen, and O. K. Lee, Hepatology, 40, 1275 (2004).

    CAS  Google Scholar 

  9. R. E. Schwartz, M. Reyes, L. Koodie, Y. Jiang, M. Blackstad, T. Lund, T. Lenvik, S. Johnson, W. S. Hu, and C. M. Verfaillie, J. Clin. Invest., 109, 1291 (2002).

    CAS  Google Scholar 

  10. D. Baksh, L. Song, and R. S. Tuan, J. Cell. Mol. Med., 8, 301 (2004).

    CAS  Google Scholar 

  11. W. Li, S. N. Liu, D. D. Luo, L. Zhao, L. L. Zeng, S. L. Zhang, and S. L. Li, World J. Gastroenterol., 12, 4866 (2006).

    CAS  Google Scholar 

  12. Y. Zhan, Y. Wang, L. Wei, H. Chen, X. Cong, R. Fei, Y. Gao, and F. Liu, Transplant. Proceedings, 38, 3082 (2006).

    CAS  Google Scholar 

  13. D. C. Zhao, J. X. Lei, R. Chen, W. H. Yu, X. M. Zhang, S. N. Li, and P. Xiang, World J. Gastroenterol., 11, 3431 (2005).

    Google Scholar 

  14. S. Berardis, P. D. Sattwika, M. Najimi, and E. M. Sokal, World J. Gastroenterol., 21, 742 (2015).

    Google Scholar 

  15. J. V. Terrovitis, R. R. Smith, and E. Marbán, Circ. Res., 106, 479 (2010).

    CAS  Google Scholar 

  16. K. Cheng, T. S. Li, K. Malliaras, D. R. Davis, Y. Zhang, and E. Marbán, Circ. Res., 106, 1570 (2010).

    CAS  Google Scholar 

  17. K. M. Dupont, K. Sharma, H. Y. Stevens, J. D. Boerckel, A. J. Garcia, and R. E. Guldberg, Proc. Natl. Acad. Sci., 107, 3305 (2010).

    CAS  Google Scholar 

  18. S. Redenti, W. L. Neeley, S. Rompani, S. Saigal, J. Yang, H. Klassen, R. Langer, and M. J. Young, Biomaterials, 30, 3405 (2009).

    CAS  Google Scholar 

  19. M. Habib, K. Shapira-Schweitzer, O. Caspi, A. Gepstein, G. Arbel, D. Aronson, D. Seliktar, and L. Gepstein, Biomaterials, 32, 7514 (2011).

    CAS  Google Scholar 

  20. Z. Ye, Y. Zhou, H. Cai, and W. Tan, Adv. Drug Deliv. Rev., 63, 688 (2010).

    Google Scholar 

  21. Y. Miyagi, F. Zeng, X.-P. Huang, W. D. Foltz, J. Wu, A. Mihic, T. M. Yau, R. D. Weisel, and R.-K. Li, Biomaterials, 31, 7684 (2010).

    CAS  Google Scholar 

  22. H. W. Ooi, S. Hafeez, C. A. van Blitterswijk, L. Moroni, and M. B. Baker, Mater. Horizons, 4, 1020 (2017).

    CAS  Google Scholar 

  23. J. Demol, D. Lambrechts, L. Geris, J. Schrooten, and H. van Oosterwyck, Biomaterials, 32, 107 (2011).

    CAS  Google Scholar 

  24. Y. Hong, Y. Gong, C. Gao, and J. Shen, J. Biomed. Mater. Res. Part A, 85, 628 (2008).

    Google Scholar 

  25. K. M. Park, S. Y. Lee, Y. K. Joung, J. S. Na, M. C. Lee, and K. D. Park, Acta Biomater., 5, 1956 (2009).

    CAS  Google Scholar 

  26. S. Redenti, S. Tao, J. Yang, P. Gu, H. Klassen, S. Saigal, T. Desai, and M. J. Young, J. Ocular Biology, Diseases, and Informatics, 1, 19 (2008).

    Google Scholar 

  27. W. L. Neeley, S. Redenti, H. Klassen, S. Tao, T. Desai, M. J. Young, and R. Langer, Biomaterials, 29, 418 (2008).

    CAS  Google Scholar 

  28. S. Tao, C. Young, S. Redenti, Y. Zhang, H. Klassen, T. Desai, and M. J. Young, Lab Chip, 7, 695 (2007).

    CAS  Google Scholar 

  29. M. Tomita, E. Lavik, H. Klassen, T. Zahir, R. Langer, and M. J. Young, Stem Cells, 23, 1579 (2005).

    Google Scholar 

  30. S. J. Hollister, Nat. Mater., 4, 518 (2005).

    CAS  Google Scholar 

  31. R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, Biomaterials, 20, 573 (1999).

    CAS  Google Scholar 

  32. T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, Biomed. Mater., 2, 124 (2007).

    Google Scholar 

  33. A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano, and S. Franzese, Biomaterials, 22, 1365 (2001).

    CAS  Google Scholar 

  34. S.-W. Choi, Y.-C. Yeh, Y. Zhang, H.-W. Sung, and Y. Xia, Small, 6, 1492 (2010).

    CAS  Google Scholar 

  35. J. H. Ryu, S. S. Kim, S. W. Cho, C. Y. Choi, and B. S. Kim, J. Biomed. Mater. Res. A, 71, 128 (2004).

    Google Scholar 

  36. S.-W. Kang and Y. H. Bae, Biomaterials, 30, 4227 (2009).

    CAS  Google Scholar 

  37. Y.-J. Chang, J.-W. Liu, P.-C. Lin, L.-Y. Sun, C.-W. Peng, G.-H. Luo, T.-M. Chen, R.-P. Lee, S.-Z. Lin, H.-J. Harn, and T.-W. Chiou, Life Sci., 85, 517 (2009).

    CAS  Google Scholar 

  38. D. C. Zhao, J. X. Lei, R. Chen, W. H. Yu, X. M. Zhang, S. N. Li, and P. Xiang, World J. Gastroenterol., 11, 3431 (2005).

    Google Scholar 

  39. M. T. Abdel Aziz, H. M. Atta, S. Mahfouz, H. H. Fouad, N. K. Roshdy, H. H. Ahmed, L. A. Rashed, D. Sabry, A. A. Hassouna, and N. M. Hasan, Clin. Biochem., 40, 893 (2007).

    CAS  Google Scholar 

  40. T. K Kim, J. J. Yoon, D. S. Lee, and T. G. Park, Biomaterials, 27, 152 (2006).

    Google Scholar 

  41. P. Mullen, Methods Mol. Med., 88, 287 (2004).

    CAS  Google Scholar 

  42. M. Massumi, M. Abasi, H. Babaloo, P. Terraf, M. Safi, M. Saeed, J. Barzin, M. Zandi, and M. Soleimani, Tissue Eng. Part A, 18, 609 (2012).

    CAS  Google Scholar 

  43. S. W. Kang, S. W. Seo, C. Y. Choi, and B. S. Kim, Tissue Engineering Part C: Methods, 14, 25 (2008).

    CAS  Google Scholar 

  44. S. W. Kang, W. G. La, and B. S. Kim, J. Biomaterials Sci. Polym. Ed., 20, 399 (2009).

    CAS  Google Scholar 

  45. S. Shintani, T. Murohara, H. Ikeda, T. Ueno, K. Sasaki, J. Duan, and T. Imaizumi, Circulation, 103, 897 (2001).

    CAS  Google Scholar 

  46. D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson, B. Li, J. Pickel, R. McKay, B. Nadal-Ginard, D. M. Bodine, A. Leri, and P. Anversa, Nature, 410, 701 (2001).

    CAS  Google Scholar 

  47. S. W. Cho, S. J. Gwak, S. W. Kang, S. H. Bhang, K. W. Song, Y. S. Yang, C. Y. Choi, and B.-S. Kim, Tissue Eng., 12, 1651 (2006).

    CAS  Google Scholar 

  48. P. Akhyari, H. Kamiya, A. Haverich, M. Karck, A. Lichtenberg, Eur. J. Cardio-Thoracic Surg., 34, 229 (2008).

    Google Scholar 

  49. C. V. C. Bouten, P. Y. W. Dankers, A. Driessen-Mol, S. Pedron, A. M. A. Brizard, and F. P. T. Baaijens, Adv. Drug Deliv. Rev., 63, 221 (2011).

    CAS  Google Scholar 

  50. S. Battista, D. Guarnieri, C. Borselli, S. Zeppetelli, A. Borzacchiello, L. Mayol, D. Gerbasio, D. R. Keene, L. Ambrosio, and P. A. Netti, Biomaterials, 26, 6194 (2005).

    CAS  Google Scholar 

  51. C.-C. Huang, H.-J. Wei, Y.-C. Yeh, J.-J. Wang, W.-W. Lin, T.-Y. Lee, S.-M. Hwang, S.-W. Choi, Y. Xia, Y. Chang, and H.-W. Sung, Biomaterials, 33, 4069 (2012).

    CAS  Google Scholar 

  52. E. Tsolaki and E. Yannaki, World J. Gastroenterol., 21, 12334 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don-Haeng Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, MJ., Choi, M., Kim, M. et al. Injectable and Cryopreservable MSC-Loaded PLGA Microspheres for Recovery from Chemically Induced Liver Damage. Macromol. Res. 28, 1017–1025 (2020). https://doi.org/10.1007/s13233-020-8139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8139-4

Keywords

Navigation