Skip to main content
Log in

Amidoximated orange peel as a specific uranium scavenger

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Biomass waste is recognized as potential raw material for many adsorbents. In this study orange peel biochar (OP) was modified with amidoxime group. The consequent amidoximated orange peel biochar (OP-AO) was investigated to reveal potential for the removal of U(VI) from aqueous solution. Essential parameters for the adsorption such as pH, initial U(VI) concentration, adsorption time and temperature were determined. The SEM, FT-IR, XPS, BET analyses and Zeta potential test were used to characterize the structure of amidoximated biochar and the adsorption mechanisms. Kinetics, isotherms and thermodynamics were studied. The results showed that modification with amidoxime group improved the U(VI) adsorption capacity of the original biochar (Qmax (OP-AO) = 382.89 mg/g > Qmax (OP) = 155.44 mg/g). The obtained results showed that the used biochar is a promising adsorbent for the specific uranium separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tao QQ, Zhang X, Prabaharan K, Dai Y (2019) Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells. Bioresour Technol 278:456–459

    Article  CAS  Google Scholar 

  2. Ding L, Tan WF, Xie SB, Mumford K, Lv JW, Wang HQ, Fang Q, Zhang XW, Wu XY, Li M (2018) Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp—coated biochar as green trapping agent. Environ Pollut 242:778–787

    Article  CAS  Google Scholar 

  3. Guilhen SN, Masek O, Ortiz N, Izidoro JC, Fungaro DA (2019) Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions. Biomass Bioenergy 122:381–390

    Article  CAS  Google Scholar 

  4. Li MX, Liu HB, Chen TH, Dong C, Sun YB (2019) Synthesis of magnetic biochar composites for enhanced uranium (VI) adsorption. Sci Total Environ 651:1020–1028

    Article  CAS  Google Scholar 

  5. Xu ZM, Xing YX, Ren AR, Ma DD, Li YX, Hu SH (2020) Study on adsorption properties of water hyacinth-derived biochar for uranium (VI). J Radioanal Nucl Chem 324(3):1317–1327

    Article  CAS  Google Scholar 

  6. Chen D, Li RY, Bian RJ, Li LQ, Joseph S, Crowley D, Pan GX (2017) Contribution of soluble minerals in biochar to Pb2+ adsorption in aqueous solutions. BioResources 12(1):1662–1679

    CAS  Google Scholar 

  7. Dai Y, Lv RW, Fan JL, Peng H, Zhang ZB, Cao XH, Liu YH (2020) Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium. J Hazard Mater 391:121467

    Article  CAS  Google Scholar 

  8. Cao YY, Shen GH, Zhang Y, Gao CF, Li YF, Zhang PZ, Xiao WH, Han LJ (2019) Impacts of carbonization temperature on the Pb(II) adsorption by wheat straw-derived biochar and related mechanism. Sci Total Environ 692:479–489

    Article  CAS  Google Scholar 

  9. Chen J, Zhang D, Zhang H, Ghosh S, Pan B (2017) Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Sci Total Environ 579:598–605

    Article  CAS  Google Scholar 

  10. Chen L, Chen XL, Zhou CH, Yang HM, Ji SF, Tong DS, Zhong ZK, Yu WH, Chu MQ (2017) Environmental-friendly montmorillonite-biochar composites: facile production and tunable adsorption-release of ammonium and phosphate. J Clean Prod 156:648–659

    Article  CAS  Google Scholar 

  11. Chen MX, He FF, Hu DW, Bao CZ, Huang Q (2020) Broadened operating pH range for adsorption/reduction of aqueous Cr(VI) using biochar from directly treated jute (Corchorus capsularis L.) fibers by H3PO4. Chem Eng J 381:122739

    Article  CAS  Google Scholar 

  12. Choudhary M, Kumar R, Neogi S (2020) Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J Hazard Mater 392:122441

    Article  CAS  Google Scholar 

  13. Deng JQ, Liu YQ, Liu SB, Zeng GM, Tan XF, Huang BY, Tang XJ, Wang SF, Hua Q, Yan ZL (2017) Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J Colloid Interfaces Sci 506:355–364

    Article  CAS  Google Scholar 

  14. Flores K, Gonzalez D, Parsons J (2017) Adsorption of chromium(VI) metal ions via amino modified biochar. Abstr Pap Am Chem S 253. http://apps.webofknowledge.com/full_record.do?product=WOS%26search_mode=GeneralSearch%26qid=6%26SID=6DJ4692WGeNf1DDN4RZ%26page=1%26doc=1

  15. Zhang ZB, Cao XH, Liang P, Liu YH (2013) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295(2):1201–1208

    Article  CAS  Google Scholar 

  16. Hu XL, Song JY, Wang HY, Zhang W, Wang B, Lyu WL, Wang QL, Liu P, Chen L, Xing J (2019) Adsorption of Cr(VI) and Cu(II) from aqueous solutions by biochar derived from Chaenomeles sinensis seed. Water Sci Technol 80(12):2260–2272

    Article  CAS  Google Scholar 

  17. Hou J, Huang L, Yang ZM, Zhao YQ, Deng CR, Chen YC, Li X (2016) Adsorption of ammonium on biochar prepared from giant reed. Environ Sci Pollut R 23(19):19107–19115

    Article  CAS  Google Scholar 

  18. Hsu DL, Lu CY, Pang TR, Wang YP, Wang GH (2019) Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain. Appl Sci-Basel 9(23):5249

    Article  CAS  Google Scholar 

  19. Jiang YH, Li AY, Deng H, Ye CH, Li Y (2019) Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar. Environ Sci Pollut R 26(18):18343–18353

    Article  CAS  Google Scholar 

  20. Lian F, Cui GN, Liu ZQ, Duo L, Zhang GL, Xing BS (2016) One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. J Environ Manag 176:61–68

    Article  CAS  Google Scholar 

  21. Jawad AH, Al-Heetimi DTA, Mastuli MS (2019) Biochar from orange (Citrus sinensis) peels by acid activation for methylene blue adsorption. Iran J Chem Chem Eng 38(2):91–105

    CAS  Google Scholar 

  22. Lu X, He SN, Zhang DX, Reda AT, Liu C, Feng J, Yang Z (2016) Synthesis and characterization of amidoxime modified calix[8] arene for adsorption of U(VI) in low concentration uranium solutions. RSC Adv 6(103):101087–101097

    Article  CAS  Google Scholar 

  23. Zhuang ST, Cheng R, Kang M, Wang JL (2018) Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J Clean Prod 188:655–661

    Article  CAS  Google Scholar 

  24. Liu JM, Yin XH, Liu T (2019) Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution. J Taiwan Inst Chem E 95:416–423

    Article  CAS  Google Scholar 

  25. Liu P, Yu Q, Xue Y, Chen JQ, Ma FQ (2020) Adsorption performance of U(VI) by amidoxime-based activated carbon. J Radioanal Nucl Chem 324(2):813–822

    Article  CAS  Google Scholar 

  26. Dai Y, Jin JY, Zhou LM, Li TQ, Li Z, Liu ZR, Huang GL, Adesina AA (2017) Preparation of hollow SiO2 microspheres functionalized with amidoxime groups for highly efficient adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 311(3):2029–2037

    Article  CAS  Google Scholar 

  27. Li L, Hu N, Ding DX, Xin X, Wang YD, Xue JH, Zhang H, Tan Y (2015) Adsorption and recovery of U(VI) from low concentration uranium solution by amidoxime modified Aspergillus niger. RSC Adv 5(81):65827–65839

    Article  CAS  Google Scholar 

  28. Alam MS, Gorman-Lewis D, Chen N, Konhauser K, Alessi D (2017) Analysis of U(VI) adsorption to biochar using x-ray absorption spectroscopy and isothermal titration calorimetry. Abstr Pap Am Chem S 253. http://apps.webofknowledge.com/full_record.do?product=WOS%26search_mode=GeneralSearch%26qid=8%26SID=6DJ4692WGeNf1DDN4RZ%26page=1%26doc=1

  29. Chen YY, Wang BY, Xin J, Sun P, Wu D (2018) Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera. Ecotox Environ Safe 164:440–447

    Article  CAS  Google Scholar 

  30. Cui LQ, Chen TM, Yin CT, Yang JL, Ippolito JA, Hussain Q (2019) Mechanism of adsorption of cadmium and lead ions by iron-activated biochar. BioResources 14(1):842–857

    Article  CAS  Google Scholar 

  31. Ao JX, Zhang HJ, Xu X, Yao FJ, Ma L, Zhang L, Ye BJ, Li QN, Xu L, Ma HJ (2019) A novel ion-imprinted amidoxime-functionalized UHMWPE fiber based on radiation-induced crosslinking for selective adsorption of uranium. RSC Adv 9(49):28588–28597

    Article  CAS  Google Scholar 

  32. Zhao C, Liu J, Li X, Li F, Tu H, Sun Q, Liao J, Yang J, Yang Y, Liu N (2016) Biosorption and bioaccumulation behavior of uranium on Bacillus sp. dwc-2: investigation by box-Behenken design method. J Mol Liq 221:156

    Article  CAS  Google Scholar 

  33. Xie J, Lv R, Peng H, Fan J, Tao Q, Dai Y, Zhang Z, Cao X, Liu Y (2020) Phosphate functionalized poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA): an electrospinning nanofiber for uranium separation. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07319-x

    Article  Google Scholar 

  34. Li L, Huang SY, Wen T, Ma R, Yin L, Li JX, Chen ZS, Hayat T, Hu BW, Wang XK (2019) Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). J Colloid Interface Sci 543:225–236

    Article  CAS  Google Scholar 

  35. Donat R, Erden KE (2017) Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells. Radiochim Acta 105(5):359–367

    Article  CAS  Google Scholar 

  36. Tan Y, Li L, Zhang H, Ding DX, Dai ZR, Xue JH, Liu JQ, Hu N, Wang YD (2018) Adsorption and recovery of U(VI) from actual acid radioactive wastewater with low uranium concentration using thioacetamide modified activated carbon from liquorice residue. J Radioanal Nucl Ch 317(2):811–824

    Article  CAS  Google Scholar 

  37. Yang SS, Huang YW, Huang GL, Peng W, Guo CL, Shi J (2020) Preparation of amidoxime-functionalized biopolymer/graphene oxide gels and their application in selective adsorption separation of U(VI) from aqueous solution. J Radioanal Nucl Ch 324(2):847–855

    Article  CAS  Google Scholar 

  38. Cheira MF, Mira HI, Sakr AK, Mohamed SA (2019) Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. Nucl Sci Tech 30(10):156

    Article  Google Scholar 

  39. Alexandratos S, Zhu XP (2016) Bifunctional amidoxime fibers for the recovery of uranium from seawater. Abstr Pap Am Chem S 251. http://apps.webofknowledge.com/full_record.do?product=WOS%26search_mode=GeneralSearch%26qid=2%26SID=6DJ4692WGeNf1DDN4RZ%26page=1%26doc=3

  40. Akl ZF, El-Saeed SM, Atta AM (2016) In-situ synthesis of magnetite acrylamide amino-amidoxime nanocomposite adsorbent for highly efficient sorption of U(VI) ions. J Ind Eng Chem 34:105–116

    Article  CAS  Google Scholar 

  41. Bayramoglu G, Arica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 147:146–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by National Natural Science Foundation of China (No. 11705060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinqin Tao or Ying Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Tao, Q. & Dai, Y. Amidoximated orange peel as a specific uranium scavenger. J Radioanal Nucl Chem 326, 1831–1841 (2020). https://doi.org/10.1007/s10967-020-07439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07439-4

Keywords

Navigation