Skip to main content

Advertisement

Log in

Microstructure, mechanical properties, and in vitro behavior of biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study, the microstructure, mechanical properties, corrosion behavior, wettability, haemocompatibility, and cytocompatibility of the as-cast and as-rolled biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca have been systematically investigated to evaluate their feasibility as potential biodegradable materials. The results demonstrated that the Zn-1Mg-0.1Ca have significantly improved mechanical properties, with the yield strength (YS), ultimate tensile strength (UTS), and elongation of as-rolled Zn-1Mg-0.1Ca are (209.04 ± 28.31) MPa, (331.51 ± 40.06) MPa, and (35.43 ± 3.53)%, respectively. Wettability test results demonstrated that the Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca have hydrophilic surfaces that can enhance cell responses and tissue-implant interactions. The haemocompatibility evaluation showed that the hemolysis ratio of Zn-1Mg-0.1Ca have a low hemolysis ratio of 0.6%; the platelets remain sphere morphology and are not activated. High cell viability indicates the cytocompatibility of the as-rolled Zn-1Mg-0.1Ca alloy. The Zn-1Mg-0.1Ca alloy can be considered as new suitable biodegradable Zn-based alloys for further biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Han H-S, Loffredo S, Jun I, Edwards J, Kim Y-C, Seok H-K. et al. Current status and outlook on the clinical translation of biodegradable metals. Mater Today. 2019;23:57–71. https://doi.org/10.1016/j.mattod.2018.05.018.

    Article  CAS  Google Scholar 

  2. Cho DH, Nam JH, Lee BW, Cho KM, Park IM. Effect of Mn addition on grain refinement of biodegradable Mg 4Zn 0.5Ca alloy. J Alloy Compd. 2016;676:461–8. https://doi.org/10.1016/j.jallcom.2016.03.182.

    Article  CAS  Google Scholar 

  3. Gui Z, Kang Z, Li Y. Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion. J Alloy Compd. 2016;685:222–30. https://doi.org/10.1016/j.jallcom.2016.05.241.

    Article  CAS  Google Scholar 

  4. Salleh EM, Zuhailawati H, Ramakrishnan S, Gepreel MA-H. A statistical prediction of density and hardness of biodegradable mechanically alloyed Mg–Zn alloy using fractional factorial design. J Alloy Compd. 2015;644:476–84. https://doi.org/10.1016/j.jallcom.2015.04.090.

    Article  CAS  Google Scholar 

  5. Roche V, Koga GY, Matias TB, Kiminami CS, Bolfarini C, Botta WJ, et al. Degradation of biodegradable implants: the influence of microstructure and composition of Mg-Zn-Ca alloys. J Alloy Compd. 2019;774:168–81. https://doi.org/10.1016/j.jallcom.2018.09.346.

    Article  CAS  Google Scholar 

  6. Sotoudeh Bagha P, Khakbiz M, Sheibani S, Hermawan H. Design and characterization of nano and bimodal structured biodegradable Fe-Mn-Ag alloy with accelerated corrosion rate. J Alloy Compd. 2018;767:955–65. https://doi.org/10.1016/j.jallcom.2018.07.206.

    Article  CAS  Google Scholar 

  7. Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 2014;10:3346–53. https://doi.org/10.1016/j.actbio.2014.04.007.

    Article  CAS  Google Scholar 

  8. Sotoudeh Bagha P, Khakbiz M, Safaie N, Sheibani S, Ebrahimi-Barough S. Effect of high energy ball milling on the properties of biodegradable nanostructured Fe-35 wt.%Mn alloy. J Alloy Compd. 2018;768:166–75. https://doi.org/10.1016/j.jallcom.2018.07.261.

    Article  CAS  Google Scholar 

  9. Yang H, Wang C, Liu C, Chen H, Wu Y, Han J, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 2017;145:92–105. https://doi.org/10.1016/j.biomaterials.2017.08.022.

    Article  CAS  Google Scholar 

  10. Saghiri MA, Asatourian A, Orangi J, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol. 2015;96:143–55.

    Article  Google Scholar 

  11. Purushothaman M, Gudrun R, Michal T, Bernhard H. Zinc modulates PPARγ signaling and activation of porcine endothelial cells. J Nutr. 2003;133:3058.

    Article  Google Scholar 

  12. Kaji T, Fujiwara Y, Yamamoto C, Sakamoto M, Kozuka H. Stimulation by zinc of cultured vascular endothelial cell proliferation: possible involvement of endogenous basic fibroblast growth factor. Life Sci. 1994;55:1781.

    Article  CAS  Google Scholar 

  13. Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL. Zinc and cardiovascular disease. Nutrition 2010;26:1050–7.

    Article  CAS  Google Scholar 

  14. Corbo MD, Lam J. Zinc deficiency and its management in the pediatric population: a literature review and proposed etiologic classification. J Am Acad Dermatol. 2013;69:616–24 e1. https://doi.org/10.1016/j.jaad.2013.04.028.

    Article  CAS  Google Scholar 

  15. Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med Off Publ Int Soc Trace Elem Res Hum. 1998;11:119–35.

    Article  CAS  Google Scholar 

  16. Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018;71:1–23. https://doi.org/10.1016/j.actbio.2018.03.005.

    Article  CAS  Google Scholar 

  17. Mostaed E, Sikora-Jasinska M, Mostaed A, Loffredo S, Demir AG, Previtali B, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. J Mech Behav Biomed Mater. 2016;60:581–602. https://doi.org/10.1016/j.jmbbm.2016.03.018.

    Article  CAS  Google Scholar 

  18. ASTM-E8-13. Standard test methods for tension testing of metallic materials. In: Annual book of ASTM standards. American Society for Testing and Materials. 2013.

  19. ASTM G102-89. Standard practice for calculation of corrosion rates and related information from electrochemical measurements. In: Annual Book of ASTM Standards. American Society for Testing and Materials. 2010;89.

  20. ISO 10993‐5. Biological evaluation of medical devices–Part 5: tests for in vitro cytotoxicity. Geneva: International Organization for Standardization; 2009.

  21. Agrawal G, Negi YS, Pradhan S, Dash M, Samal SK. 3—Wettability and contact angle of polymeric biomaterials. In: Tanzi MC, Farè S, editors. Characterization of Polymeric Biomaterials. Woodhead Publishing; 2017. p. 57–81.

  22. Spriano S, Sarath Chandra V, Cochis A, Uberti F, Rimondini L, Bertone E, et al. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Mater Sci Eng C Mater Biol Appl. 2017;74:542–55. https://doi.org/10.1016/j.msec.2016.12.107.

    Article  CAS  Google Scholar 

  23. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res Part A. 2005;74:49–58. https://doi.org/10.1002/jbm.a.30320.

    Article  CAS  Google Scholar 

  24. Seeger JM, Ingegno MD, Bigatan E, Klingman N, Amery D, Widenhouse C, et al. Hydrophilic surface modification of metallic endoluminal stents. J Vasc Surg. 1995;22:327–36. https://doi.org/10.1016/S0741-5214(95)70148-6.

    Article  CAS  Google Scholar 

  25. Shim JW, Bae I-H, Park DS, Lee S-Y, Jang E-J, Lim K-S, et al. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization. J Biomater Appl. 2018;32:1083–9. https://doi.org/10.1177/0885328217748465.

    Article  CAS  Google Scholar 

  26. ASTM F756-13. Standard practice for assessment of hemolytic properties of materials. In: Annual Book of ASTM Standards. 2013.

Download references

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (No. 31700819), the Young Elite Scientists Sponsorship Program by CAST (YESS, No.2018QNRC001), the research funds of Lepu Medical Technology (Beijing) Co., Ltd and the Fundamental Research Funds for the Central Universities (No. 06500098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huafang Li, Xiwei Liu or Zheng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Shen, C., Ruan, D. et al. Microstructure, mechanical properties, and in vitro behavior of biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca. J Mater Sci: Mater Med 31, 88 (2020). https://doi.org/10.1007/s10856-020-06444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06444-z

Navigation