Skip to main content
Log in

Evaluation of Structural, Micro-structural, Vibrational and Elastic Properties of Ni–Cu–Zn Nanoferrites: Role of Dopant Cu2+ at Constant 0.1 mol% in Ni–Zn Spinel Structure

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Structural and elastic properties have been investigated for a series of heat treated NixCu0.1Zn0.9−xFe2O4 (x = 0.5, 0.6, 0.7) nanoferrite powders which were synthesized using co-precipitation method. Rietveld refinement patterns revealed the spinel phase belonging to fd3m space group. Lattice parameters of the heat treated samples are in the range of (8.453–8.417 Å). As the substitution level of Ni2+ increased, the lattice parameter decreased in the samples sintered at 200 °C, but it was randomly varied in the in the samples sintered at 500 °C. The average crystallite size (4.1–10.9 nm) estimated from XRD as well as average particle size (5.5–11.3 nm) estimated from FE-SEM were found to be increased with the increase of Ni2+ ion concentration in sintered ferrite samples. Sintering process was promoting the growth of nanoparticle size. The spherical nature of ferrite nanoparticles was evident from the FE-SEM micrographs. The vibrational bands observed in the FTIR spectra confirm the cubic spinel phase of ferrite systems. The variation of vibrational bands seems to be dependent on the particular metal ion occupying the spinel structure rather than the changes in bond lengths of Fe3+–O2− ion complexes. The present values of elastic moduli revealed the mechanical hardness of present heat treated ferrite samples. Interestingly, the elastic moduli depend upon the variation of both inter-atomic distances as well as cation redistribution. The identical value of Poisson’s ratio (0.35) is an authentication of isotropic behaviour of the present ferrite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5−xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43(5), 4357–4365 (2017)

    Article  CAS  Google Scholar 

  2. R. Tholkappiyan, K. Vishista, Synthesis and characterization of barium zinc ferrite nanoparticles: working electrode for dye sensitized solar cell applications. Sol. Energy 106, 118–128 (2014)

    Article  CAS  Google Scholar 

  3. K. Chandra Babu Naidu, W. Madhuri, Microwave processed bulk and nano NiMg ferrites: a comparative study on X-band electromagnetic interference shielding properties. Mater. Chem. Phys. 87, 164–176 (2017)

    Article  Google Scholar 

  4. S.G. Gawas, V.M.S. Verenkar, Precursor combustion synthesis of nanocrystalline cobalt substituted nickel zinc ferrites from hydrazinated mixed metal fumarates. Thermochim. Acta 605, 16–21 (2015)

    Article  CAS  Google Scholar 

  5. M.M. Cruz, L.P. Ferreira, J. Ramos, S.G. Mendo, A.F. Alves, M. Godinho, M.D. Carvalho, Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. J. Alloys Compd. 703, 370–380 (2017)

    Article  CAS  Google Scholar 

  6. U. Jinendra, D. Bilehal, B.M. Nagabhushana, K.R. Reddy, Ch. Venkata Reddy, A.V. Raghu, Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: comparative adsorption studies, isotherms and kinetic studies. Mater. Sci. Energy Technol. 2, 657–666 (2019)

    Google Scholar 

  7. M.A. Gabal, Y.M. Al Angari, A.Y. Obaid, A. Qusti, Structural analysis and magnetic properties of nanocrystalline NiCuZn ferrites synthesized via a novel gelatin method. Adv. Powder Technol. 25, 457–461 (2014)

    Article  CAS  Google Scholar 

  8. K. Sadhana, K. Praveena, S.R. Murthy, A study of ultrasonic velocity and attenuation on nanocrystalline MgCuZn. J. Magn. Magn. Mater. 323, 2977–2981 (2011)

    Article  CAS  Google Scholar 

  9. H. Su, H. Zhang, X. Tang, Y.J.Y. Liu, Effects of composition and sintering temperature on properties of NiZn and NiCuZn ferrites. J. Magn. Magn. Mater. 310(1), 17–21 (2007)

    Article  CAS  Google Scholar 

  10. H. Harzali, F. Saida, A. Marzouki, A. Megriche, F. Baillon, F. Espitalier, A. Mgaidi, Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation. J. Magn. Magn. Mater. 419, 50–56 (2016)

    Article  CAS  Google Scholar 

  11. M. Penchal Reddy, W. Madhuri, G. Balakrishnaiah, N. Ramamanohar Reddy, K.V. Siva Kumar, V.R.K. Murthy, R. Ramakrishna Reddy, Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors. Curr. Appl. Phys. 11(2), 191–198 (2011)

    Article  Google Scholar 

  12. M.A. Gabal, Y.M. Al Angari, S.S. Al-Juaid, A study on Cu substituted Ni–Cu–Zn ferrites synthesized using egg-white. J. Alloys Compd. 492(1–2), 411–415 (2010)

    Article  CAS  Google Scholar 

  13. J. Xiang, X. Shen, F. Song, M. Liu, One-dimensional NiCuZn ferrite nanostructures: fabrication, structure, and magnetic properties. J. Solid State Chem. 183(6), 1239–1244 (2010)

    Article  CAS  Google Scholar 

  14. M.N. Akhtar, M.A.K.M. Ahmad, M.S. Nazir, M. Imrana, A. Ali, A. Sattara, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017)

    Article  CAS  Google Scholar 

  15. B.V. Tirupanyam, Ch. Srinivas, S.S. Meena, S.M. Yusuf, A. SatishKumar, D.L. Sastry, V. Seshubai, Investigation of structural and magnetic properties of co-precipitated Mn–Ni ferrite nanoparticles in the presence of α-Fe2O3 phase. J. Magn. Magn. Mater. 392, 101–106 (2015)

    Article  CAS  Google Scholar 

  16. A.S. Džunuzović, N.I. Ilić, M.M. Vijatović Petrović, J.D. Bobić, B. Stojadinović, Z. Dohčević-Mitrović, B.D. Stojanović, Structure and properties of Ni–Zn ferrite obtained by auto-combustion method. J. Magn. Magn. Mater. 374, 245–251 (2015)

    Article  Google Scholar 

  17. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoğlu, M. Sertkol, B. Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG—assisted hydrothermal route. J. Alloys Compd. 479, 49–55 (2009)

    Article  CAS  Google Scholar 

  18. M. Kaur, P.J.M. Singh, Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co0.6−xMgxZn0.4Fe2O4 (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles. Mater. Chem. Phys. 162, 332–339 (2015)

    Article  CAS  Google Scholar 

  19. K.A.M. Khalaf, A.D. Al-Rawas, H.M. Widatallah, K.S. Al-Rashdi, A. Sellai, A.M. Gismelseed, M. Hashim, S.K. Jameel, M.S. Al-Ruqeishi, K.O. Al-Riyami, M. Shongwe, A.H. Al-Rajhi, Influence of Zn2+ ions on the structural and electrical properties of Mg1−xZnxFeCrO4 spinels. J. Alloys Compd. 657, 733–747 (2016)

    Article  CAS  Google Scholar 

  20. J. Jadhav, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Structural and magnetic properties of nanocrystalline Ni–Zn ferrites: in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017)

    Article  CAS  Google Scholar 

  21. L. Andjelković, M. Šuljagić, M. Lakić, D. Jeremić, P. Vulić, A.S. Nikolić, A study of the structural and morphological properties of Ni–ferrite, Zn–ferrite and Ni–Zn–ferrites functionalized with starch. Ceram. Int. 44(12), 14163–14168 (2018)

    Article  Google Scholar 

  22. R. Sharma, P. Thakur, P. Sharma, V. Sharma, Ferrimagnetic Ni2+ doped Mg–Zn spinel ferrite nanoparticles for high density information storage. J. Alloys Compd. 704, 7–17 (2017)

    Article  CAS  Google Scholar 

  23. E. Melagiriyappa, H.S. Jayanna, Structural and magnetic susceptibility studies of samarium substituted magnesium–zinc ferrites. J. Alloys Compd. 482, 147–150 (2009)

    Article  CAS  Google Scholar 

  24. K.M. Batoo, M.S. Ansari, Low temperature—fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7(112), 1–15 (2012)

    Google Scholar 

  25. Ch. Srinivas, B.V. Tirupanyam, A. Satish, V. Seshubai, D.L. Sastry, O.F. Caltun, Effect of Ni2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 382, 15–19 (2015)

    Article  CAS  Google Scholar 

  26. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  CAS  Google Scholar 

  27. M. Molaahmadi, S. Baghshahi, A. Ghasemi, Effect of Cu2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanopowders. J. Mater. Sci.: Mater. Electron. (2016). https://doi.org/10.1007/s10854-5271-1

    Article  Google Scholar 

  28. M. Rahimi, P. Kameli, M. Rajbar, H. Hajihashemi, H. Salamati, The effect of zinc doping on the structural and magnetic properties of Ni1−xZnxFe2O4. J. Mater. Sci. 48, 2969–2976 (2013)

    Article  CAS  Google Scholar 

  29. A.T. Raghavender, N. Biliškov, Ž. Skoko, XRD and IR analysis of nanocrystalline Ni–Zn ferrite synthesized by the sol–gel method. Mater. Lett. 65(4), 677–680 (2011)

    Article  CAS  Google Scholar 

  30. P. Priyadharsini, A. Pradeep, P. Sambasiva Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic studies of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116(1), 207–213 (2009)

    Article  CAS  Google Scholar 

  31. A.V. Raghu, G.S. Gadaginamath, T.M. Aminabhavi, Synthesis and characterization of novel polyurethanes based on 1,3-bis(hydroxymethyl) benzimidazolin-2-one and 1,3-bis(hydroxymethyl) benzimidazolin-2-thione hard segments. J. Appl. Polym. Sci. 98, 2236–2244 (2005)

    Article  CAS  Google Scholar 

  32. A.V. Raghu, G.S. Gadaginamath, N.N. Mallikarjuna, T.M. Aminabhavi, Synthesis and characterization of novel polyureas based on benzimidazoline-2-one and benzimidazoline-2-thione hard segments. J. Appl. Polym. Sci. 100, 576–583 (2006)

    Article  CAS  Google Scholar 

  33. D. Bouokkeze, J. Massoudi, W. Hzez, M. Smari, A. Bougoffa, K. Khirouni, E. Dhahri, L. Bessais, Investigation of the structural, optical, elastic and electrical properties of spinel LiZn2Fe3O8 nanoparticles annealed at two distinct temperatures. RSC Adv. 9, 40940–40955 (2019)

    Article  CAS  Google Scholar 

  34. A. Gholizadeh, Structural and mechanical properties of AFe2O4 (A = Zn, Cu0.5Zn0.5, Ni0.3Cu0.2Zn0.5) nanoparticles prepared by citrate method at low temperature. J. Nanoanal. 5(1), 7–16 (2018)

    Google Scholar 

  35. R.S. Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Article  Google Scholar 

  36. K.B. Modi, S.J. Shah, N.B. Pujara, T.K. Pathak, N.H. Vasoya, I.G. Jhala, Infrared spectral evolution, elastic, optical and thermodynamic properties study on mechanically milled Ni0.5Zn0.5Fe2O4 spinel ferrite. J. Mol. Struct. 1049, 250–262 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ch. Srinivas, E. Ranjith Kumar or D. L. Sastry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishna, K.S., Srinivas, C., Prasad, S.A.V. et al. Evaluation of Structural, Micro-structural, Vibrational and Elastic Properties of Ni–Cu–Zn Nanoferrites: Role of Dopant Cu2+ at Constant 0.1 mol% in Ni–Zn Spinel Structure. J Inorg Organomet Polym 31, 1336–1346 (2021). https://doi.org/10.1007/s10904-020-01773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01773-6

Keywords

Navigation