Skip to main content

Advertisement

Log in

Wnt pathway modulation generates blastomere-derived mouse embryonic stem cells with different pluripotency features

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to determine the role of Wnt pathway in mouse embryonic stem cell (mESC) derivation from single blastomeres isolated from eight-cell embryos and in the pluripotency features of the mESC established.

Methods

Wnt activator CHIR99021, Wnt inhibitor IWR-1-endo, and MEK inhibitor PD0325901 were used alone or in combination during ESC derivation and maintenance from single blastomeres biopsied from eight-cell embryos. Alkaline phosphatase activity, FGF5 levels, expression of key pluripotency genes, and chimera formation were assessed to determine the pluripotency state of the mESC lines.

Results

Derivation efficiencies were highest when combining pairs of inhibitors (15–24.7%) than when using single inhibitors or none (1.4–10.1%). Full naïve pluripotency was only achieved in CHIR- and 2i-treated mESC lines, whereas IWR and PD treatments or the absence of treatment resulted in co-existence of naïve-like and primed-like pluripotency features. IWR + CHIR- and IWR + PD-treated mESC displayed features of primed pluripotency, but IWR + CHIR-treated lines were able to generate germline-competent chimeric mice, resembling the predicted properties of formative pluripotency.

Conclusion

Wnt and MAPK pathways have a key role in the successful derivation and pluripotency features of mESC from single precompaction blastomeres. Modulation of these pathways results in mESC lines with various degrees of naïve-like and primed-like pluripotency features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Available upon request.

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS. 1981;78:7634–8.

    Article  CAS  Google Scholar 

  3. Wakayama S, Hikichi T, Suetsugu R, Sakaide Y, Bui H-T, Mizutani E, et al. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells. 2007;25:986–93.

    Article  CAS  Google Scholar 

  4. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1988;336:688–90.

    Article  CAS  Google Scholar 

  5. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336:684–7.

    Article  CAS  Google Scholar 

  6. Silva J, Smith A. Capturing Pluripotency. Cell. 2008;132:532–6.

    Article  CAS  Google Scholar 

  7. Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.

    Article  CAS  Google Scholar 

  8. Czechanski A, Byers C, Greenstein I, Schrode N, Donahue LR, Hadjantonakis A-K, et al. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc. 2014;9:559–74.

    Article  CAS  Google Scholar 

  9. Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 2014;16:516–28.

    Article  CAS  Google Scholar 

  10. Faunes F, Hayward P, Descalzo SM, Chatterjee SS, Balayo T, Trott J, et al. A membrane-associated β-catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development. 2013;140:1171–83.

    Article  CAS  Google Scholar 

  11. ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat. Cell Biol. 2011;13:1070–5.

    Article  Google Scholar 

  12. Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol. 2011;13:838–45. Nat Publ Group; Available from:. https://doi.org/10.1038/ncb2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 2008;22:746–55.

    Article  CAS  Google Scholar 

  14. Clevers H. Wnt/b-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  Google Scholar 

  15. Kim H, Wu J, Ye S, Tai CI, Zhou X, Yan H, et al. Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun. 2013;4:2403.

    Article  Google Scholar 

  16. Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. Nat Publ Group. 2016;17:155–69.

    Article  CAS  Google Scholar 

  17. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4:487–92. Elsevier Inc. Available from:. https://doi.org/10.1016/j.stem.2009.05.015.

    Article  CAS  PubMed  Google Scholar 

  18. Nichols J, Smith A. Pluripotency in the embryo and in culture. Cold Spring Harb Perspectives Biol. 2012;4:1–15.

    Google Scholar 

  19. Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, et al. Nanog is the gateway to the pluripotent ground state. Cell. 2009;138:722–37. Elsevier Ltd Available from:. https://doi.org/10.1016/j.cell.2009.07.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martello G, Bertone P, Smith A. Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J. 2013;32:2561–74.

    Article  CAS  Google Scholar 

  21. Sim Y-J, Kim M-S, Nayfeh A, Yun Y-J, Kim S-J, Park K-T, et al. 2i maintains a naive ground state in ESCs through two distinct epigenetic mechanisms. Stem Cell Reports. 2017;8:1–17.

    Article  Google Scholar 

  22. Ye S, Liu D, Ying Q-L. Signalling pathways in induced naïve pluripotency. Curr Opin Genet Dev. 2014;28:10–5.

    Article  CAS  Google Scholar 

  23. Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, et al. Reactivation of the paternal X chromosome in early mouse embryos. Science (80-. ). 2004;303:666–9.

    Article  CAS  Google Scholar 

  24. Sugimoto M, Kondo M, Koga Y, Shiura H, Ikeda R, Hirose M, et al. A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by Wnt inhibition. Stem Cell Reports. 2015;4:744–57. [Internet]. The Authors; Available from:. https://doi.org/10.1016/j.stemcr.2015.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32. Elsevier Inc.; Available from:. https://doi.org/10.1016/j.cell.2011.06.052.

    Article  CAS  PubMed  Google Scholar 

  26. Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development. 2017;144:365–73.

    Article  CAS  Google Scholar 

  27. Morgani S, Nichols J, Hadjantonakis AK. The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Dev Biol. 2017;17:10–2.

    Article  Google Scholar 

  28. Lee H-J, Zhang X, Zheng JJ. Inhibiting the wnt signaling pathway with small molecules. Target Wnt Pathw Cancer. 2011;00:183–209.

    Article  Google Scholar 

  29. Vila-Cejudo M, Massafret O, Santaló J, Ibáñez E. Single blastomeres as a source of mouse embryonic stem cells: effect of genetic background, medium supplements, and signaling modulators on derivation efficiency. J Assist Reprod Genet. 2018;36:99–111.

    Article  Google Scholar 

  30. González S, Ibáñez E, Santaló J. Influence of E-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres. Stem Cell Rev Reports. 2011;7:494–505.

    Article  Google Scholar 

  31. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014;13:1400–12.

    Article  CAS  Google Scholar 

  32. McFarlane L, Truong V, Palmer JS, Wilhelm D. Novel PCR assay for determining the genetic sex of mice. Sex Dev. 2013;7:207–11.

    Article  CAS  Google Scholar 

  33. Gaztelumendi N, Nogués C. Chromosome instability in mouse embryonic stem cells. Sci Rep. 2014;4:1–8.

    Google Scholar 

  34. Bedzhov I, Leung CY, Bialecka M, Zernicka-Goetz M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 2014;9:2732–9.

    Article  CAS  Google Scholar 

  35. Wu Y, Liu F, Liu Y, Liu X, Ai Z, Guo Z, et al. GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime inhibit microRNA maturation in mouse embryonic stem cells. Sci. Rep. 2015;5:8666.

    Article  CAS  Google Scholar 

  36. Saj A, Chatterjee SS, Zhu B, Cukuroglu E, Gocha T, Zhang X, et al. Disrupting interactions between β-catenin and activating TCFs reconstitutes ground state pluripotency in mouse embryonic stem cells. Stem Cells. 2017;35:1924–1933.

  37. Matsui Y, Zsebo K, Hogan BLM. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992;70:841–7.

    Article  CAS  Google Scholar 

  38. Hayashi K, Lopes SMC d S, Tang F, Surani MA. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell. 2008;3:391–401.

    Article  CAS  Google Scholar 

  39. Acampora D, Di Giovannantonio LG, Garofalo A, Nigro V, Omodei D, Lombardi A, et al. Functional antagonism between OTX2 and NANOG specifies a spectrum of heterogeneous identities in embryonic stem cells. Stem Cell Reports. 2017;9:1642–59. [Internet]. ElsevierCompany. Available from:. https://doi.org/10.1016/j.stemcr.2017.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Acampora D, Omodei D, Petrosino G, Garofalo A, Savarese M, Nigro V, et al. Loss of the Otx2-binding site in the Nanog promoter affects the integrity of embryonic stem cell subtypes and specification of inner cell mass-derived epiblast. Cell Rep. 2016;15:2651–64.

    Article  CAS  Google Scholar 

  41. Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development. 2007;134:2895–902.

    Article  CAS  Google Scholar 

  42. Ghimire S, Van Der Jeught M, Neupane J, Roost MS, Anckaert J, Popovic M, et al. Comparative analysis of naive, primed and ground state pluripotency in mouse embryonic stem cells originating from the same genetic background. Sci Rep. 2018;8:1–11.

    Article  CAS  Google Scholar 

  43. Kurek D, Neagu A, Tastemel M, Tüysüz N, Lehmann J, Van De Werken HJG, et al. Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells. Stem Cell Reports. 2015;4:114–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank staff from Servei Estabulari from Universitat Autònoma de Barcelona for animal care, Jonatan Lucas for help with feeder cell culture and reagent preparation and Salvador Bartolomé for his assistance and advice in the design of the RT-qPCR experiments.

Code availability

Not applicable.

Funding

This work was supported by the Ministerio de Economia y Competitividad of Spain (AGL2014-52408-R) and the Generalitat de Catalunya (2014 SGR-524 and 2017 SGR-503). MVC and SAA were beneficiary of a PIF-UAB fellowship.

Author information

Authors and Affiliations

Authors

Contributions

MVC: conceptualization, formal analysis, investigation, writing - original draft, visualization. SAA: formal analysis, investigation, visualization. AP: investigation. JS: conceptualization, writing – review & editing, funding acquisition. EI: conceptualization, writing – review & editing, funding acquisition.

Corresponding author

Correspondence to Elena Ibáñez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Mouse care and procedures were conducted according to the protocols approved by the Ethics Committee on Animal and Human Research of the Universitat Autònoma de Barcelona and by the Departament d’Agricultura, Ramaderia, Pesca i Alimentació of the Generalitat de Catalunya (ref. 9995 and 9582).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vila-Cejudo, M., Alonso-Alonso, S., Pujol, A. et al. Wnt pathway modulation generates blastomere-derived mouse embryonic stem cells with different pluripotency features. J Assist Reprod Genet 37, 2967–2979 (2020). https://doi.org/10.1007/s10815-020-01964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01964-7

Keywords

Navigation