Skip to main content
Log in

Surface Behavior of Aqueous Solutions of Sodium Lauryl Ether Sulfate, Additives and Their Mixtures: Experimental and Modeling Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The surface tensions of aqueous solutions of sodium lauryl ether sulfate (SLES), ethanol, acetonitrile, 1-propanol and 2-propanol were individually measured using the pendant drop technique. Then, the surface tensions and critical micelle concentrations of the mixed aqueous solutions of (SLES + additives) were then measured at different concentrations of species for the first time. All measurements were conducted at the temperature of 298.15 K. In addition, a thermodynamic model was presented for accurately predicting of the surface tensions of the mixtures and the surface coverage of the surfactant in the mixture with the average absolute deviation of 1.45 %. Furthermore, an increase in the SLES concentration led to a higher surface coverage, although the presence of an additive caused a slight decrease in the surface coverage of SLES and an increase in the critical micelle concentration of the mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a:

Interaction parameter

AAD:

Average absolute deviation

b:

Surface-to-solution distribution constant

c:

Concentration

de :

Maximum diameter of the droplet

ds :

Small droplet diameter

g:

Gravitational constant

H:

Shape factor of a droplet

R:

Ideal gas constant

T:

Temperature

V:

Molar volume

x :

Mole fraction

α:

Bulk phase

γ:

Activity coefficient

Γ:

Surface excess

θ:

Surface coverage

\( \mu_{{\text{i}}} \) :

Chemical potential of component i

π:

Surface pressure

ρ:

Density

σ:

Surface tension

Δ:

Difference

ω:

Molar area

b:

Bulk

c:

Critical

calc:

Calculation

exp:

Experimental

i:

Component i

S:

Surface

0:

Water

1:

Surfactant or additive

References

  1. N. Azum, M.A. Rub, A.M. Asiri, W.A. Bawazeer, Colloids Surfaces A: Physicochem. Eng. Asp. 522, 183–192 (2017)

    Article  Google Scholar 

  2. N. Homendra, C.I. Devi, J. Surf. Sci. Technol. 22, 119–131 (2006)

    Google Scholar 

  3. L. Shen, A. Guo, X. Zhu, Surf. Sci. 605, 494–499 (2011)

    Article  ADS  Google Scholar 

  4. S.K. Shah, S.K. Chatterjee, A. Bhattarai, J. Mol. Liq. 222, 906–914 (2016)

    Article  Google Scholar 

  5. Y. Uematsu, D.J. Bonthuis, R.R. Netz, J. Phys. Chem. Lett. 9, 189 (2018)

    Article  Google Scholar 

  6. Y. Uematsu, K. Chida, H. Matsubara, Colloid Interface Sci. Commun. 27, 45 (2018)

    Article  Google Scholar 

  7. K. Manna, A.K. Panda, J. Surfact. Deterg. 14, 563–576 (2011)

    Article  Google Scholar 

  8. B.H. Lee, Colloid Interface Sci. Commun. 19, 1–4 (2017)

    Article  Google Scholar 

  9. S. Khosharay, M. Talebi, T. Akbari-Saeed, S. Salehi-Talaghani, J. Mol. Liq. 249, 245–253 (2018)

    Article  Google Scholar 

  10. A.A. Dar, G.M. Rather, S. Ghosh, A.R. Das, J. Colloid Interf. Sci. 322, 572–581 (2008)

    Article  ADS  Google Scholar 

  11. M. Aoudia, T. Al-Maamari, F. Al-Salmi, Colloids Surfaces A: Physicochem. Eng. Asp. 335, 55–61 (2009)

    Article  Google Scholar 

  12. R. Wang, Y. Li, Y. Li, J. Surfact. Deterg. 17, 881–888 (2014)

    Article  Google Scholar 

  13. D.M. Cirin, M.M. Posa, V.S. Krstonosic, Chem. Cent. J. 5, 89–97 (2011)

    Article  Google Scholar 

  14. J.M. Andreas, E.A. Hauser, W.B. Tucker, J. Phys. Chem. 42, 1001–1019 (1938)

    Article  Google Scholar 

  15. M.D. Misak, J. Colloid Interface Sci. 27, 141–142 (1968)

    Article  ADS  Google Scholar 

  16. V.B. Fainerman, R. Miller, Colloids Surfaces A: Physicochem. Eng. Asp. 319, 8–12 (2008)

    Article  Google Scholar 

  17. V.B. Fainerman, R. Miller, E.V. Aksenenko, Adv. Colloid Interf. Sci. 96, 339–359 (2002)

    Article  Google Scholar 

  18. A.A. Rafati, E. Ghasemian, J. Chem. Thermodyn. 41, 386–391 (2009)

    Article  Google Scholar 

  19. B.E. Poling, J.M. Prausnitz, J.P. Connell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2000), p. 12

    Google Scholar 

  20. N.S. Mousavi, Sh Khosharay, Fluid Phase Equilib. 465, 58–64 (2018)

    Article  Google Scholar 

  21. Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, SRD 69 (the U.S. Secretary of Commerce on behalf of the United States of America, 2018), https://webbook.nist.gov/chemistry/fluid/

  22. L. Wei, Z. Ming, Z. Jinli, H. Yongcai, Front. Chem. Chin. 4, 438 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Khosharay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosharay, S., Rahmanzadeh, M. & ZareNezhad, B. Surface Behavior of Aqueous Solutions of Sodium Lauryl Ether Sulfate, Additives and Their Mixtures: Experimental and Modeling Study. Int J Thermophys 41, 166 (2020). https://doi.org/10.1007/s10765-020-02738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02738-0

Keywords

Navigation