Skip to main content
Log in

Complete mitochondrial genome of a blue-tailed skink Plestiodon capito (Reptilia, Squamata, Scincidae) and comparison with other Scincidae lizards

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Vertebrate mitochondrial genomes (mitogenomes) are valuable for studying phylogeny, evolutionary genetics and genomics. To date, however, compared to other vertebrate groups, our knowledge about the mitogenomes of skinks (the family Scincidae), even of reptile, has been relatively limited. In the present study, we determined the complete mitogenome of a blue-tailed skink Plestiodon capito for the first time, and compared it with other skinks available in GenBank. The circular genome is 17,344 bp long, showing a typical vertebrate pattern with 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region (CR). The gene organization, nucleotide composition, and codon usage are similar to those from skinks previously published. Twelve out of 13 PCGs initiates with canonical start codon (ATG), while COX1 starts with GTG. The codon usage analysis revealed a preferential use of the LeuCUN (Leu1), Pro, and Thr codons with the A/U ending. All tRNAs in P. capito were predicted to fold into typical clover-leaf secondary structure, except tRNA-Ser AGY. The secondary structures of 12S rRNA and 16S rRNA comprises 34 helices and 56 helices, respectively. The alignment of the Plesitodon species CRs exhibited high genetic variability and rich A + T content. Besides, variable types and numbers of tandem repeat units were also identified in the CR of Plestiodon. Phylogenetic analyses recovered P. capito as the sister species to P. tunganus; monophyly of the Scincidae is well supported. Our results will help to better understand structure and evolution of the mitochondrial DNA control region in reptiles as well as the evolutionary status of P. capito, and to lay foundation for further phylogenetic study of skinks in a mitogenomic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert EM, Mauro DS, García-París M, Rüber L, Zardoya R (2009) Effect of taxon sampling on recovering the phylogeny of squamate reptiles based on complete mitochondrial genome and nuclear gene sequence data. Gene 441:12–21

    CAS  PubMed  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin JI, Eperon C, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Phil Trans R Soc London B 312:325–342

    CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:878–879

    Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319

    PubMed  Google Scholar 

  • Böhme MU, Fritzsch G, Tippmann A, Schlegel M, Berendonk TU (2007) The complete mitochondrial genome of the green lizard Lacerta viridis viridis (Reptilia: Lacertidae) and its phylogenetic position within squamate reptiles. Gene 394:69–77

    PubMed  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandley MC, Ota H, Hikida T, de Oca AN, Fería-Ortíz M, Guo X, Wang Y (2012) The phylogenetic systematics of blue-tailed skinks (Plestiodon) and the family Scincidae. Zool J Linn Soc 165:163–189

    Google Scholar 

  • Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of Scincid lizards. Syst Biol 54:373–390

    PubMed  Google Scholar 

  • Brandley MC, Wang Y, Guo X, de Oca AN, Fería-Ortíz M, Hikida T, Ota H (2011) Accommodating heterogenous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards. Syst Biol 60:3–15

    CAS  PubMed  Google Scholar 

  • Brehm A, Harris DJ, Alves CD, Jesus JD, Thomarat FD, Vicente LD (2003) Structure and evolution of the mitochondrial DNA complete control region in the lizard Lacerta dugesii (Lacertidae, Sauria). J Mol Evol 56:46–53

    CAS  PubMed  Google Scholar 

  • Brown GG (1986) Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 192:503–511

    CAS  PubMed  Google Scholar 

  • Brown RP (2005) Large subunit mitochondrial rRNA secondary structures and site-specific rate variation in two lizard lineages. J Mol Evol 60:45–56

    CAS  PubMed  Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai B, Wang Y, Chen Y, Li J (2015) A revised taxonomy for Chinese reptiles. Biodivers Sci 23:500–551 (in Chinese with English abstract)

    Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    PubMed  PubMed Central  Google Scholar 

  • Castoe TA, de Koning APJD, Kim HM, Gu W, Pollock DD (2009) Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA 106:8986–8991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Liu J, Chen D, Guo X (2019) The complete mitochondrial genome of a blue-tailed skink (Plestiodon tunganus) endemic to Sichuan Basin. Mitochondrial DNA Part B 4:1109–1110

    Google Scholar 

  • Dixon MT, Hillis DM (1993) Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Mol Biol Evol 10:256–267

    CAS  PubMed  Google Scholar 

  • Douglas DA, Gower DJ (2010) Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution. BMC Genomics 11:16

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughout. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erixon P, Svennblad B, Britton T, Oxelman B (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 52:665–673

    PubMed  Google Scholar 

  • Fujita MK, Boore JL, Moritz C (2007) Multiple origins and rapid evolution of duplicated mitochondrial genes in parthenogenetic geckos (Heteronotia binoei; Squamata, Gekkonidae). Mol Biol Evol 24:2775–2786

    CAS  PubMed  Google Scholar 

  • Gao S, Tian X, Chang H, Sun Y, Wu Z, Cheng Z, Dong P, Zhao Q, Ruan J, Bu W (2018) Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 38:41–47

    CAS  PubMed  Google Scholar 

  • Garey JR, Wolstenholme DR (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA-SerAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol 28:374–387

    CAS  PubMed  Google Scholar 

  • Gong D, Zhang Y, Song L, Ling L, Yan L (2012) Eumeces capito: a lizard new to Guizhou province. Chin J Zool 47:127–129 (in Chinese with English abstract)

    Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    CAS  PubMed  Google Scholar 

  • Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:W59–W64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickson RE, Simon C, Cooper A, Spicer GS, Sullivan J, Penny D (1996) Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. Mol Biol Evol 17:530–539

    Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Revi Biol 66:411–453

    CAS  Google Scholar 

  • Hoelzel AR, Lopez JV, Dover GA, O’Brien SJ (1994) Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J Mol Evol 39:191–199

    CAS  PubMed  Google Scholar 

  • Hudelot C, Gowri-Shankar V, Jow H, Rattray M, Higgs PG (2003) RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phylogenet Evol 28:241–252

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53:904–913

    PubMed  Google Scholar 

  • Janke A, Erpenbeck D, Nilsson M, Arnason U (2001) The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny. Proc Biol Sci 268:623–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Xu X, Jin X, Yin H, Luo J, Liu G, Zhao Q, Chen Z, Bu W, Gao S (2019) Using high-resolution annotation of insect mitochondrial DNA to decipher tandem repeats in the control region. RNA Biol 16:830–837

    PubMed  PubMed Central  Google Scholar 

  • Jiang Y (2004) A study on habitat of Eumeces capito. Sichuan J Zool 24:370–372 (in Chinese with English abstract)

    Google Scholar 

  • Jin Y, Brown RP (2018) Partition number, rate priors and unreliable divergence times in Bayesian phylogenetic dating. Cladistics 34:568–873

    PubMed  Google Scholar 

  • Kjer KM (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phylogenet Evol 4:314–330

    CAS  PubMed  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumazawa Y (2007) Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. Gene 388:19–26

    CAS  PubMed  Google Scholar 

  • Kumazawa Y, Endo H (2004) Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA Res 11:115–125

    CAS  PubMed  Google Scholar 

  • Kumazawa Y, Nishida M (1999) Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol Biol Evol 16:784–792

    CAS  PubMed  Google Scholar 

  • Kumazawa Y, Ota H, Nishida M, Ozawa T (1996) Gene rearrangements in snake mitochondrial genomes, highly concerted evolution of control region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol 13:1242–1254

    CAS  PubMed  Google Scholar 

  • Kumazawa Y, Ota H, Nishida M, Ozawa T (1998) The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 150:313–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurita K, Ota H, Hikida T (2017) A new species of Plestiodon (Squamata: Scincidae) from the Senkaku Group, Ryukyu Archipelago, Japan. Zootaxa 4254:520–536

    PubMed  Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773

    CAS  PubMed  Google Scholar 

  • Li J, Wang X, Kong X, Zhao K, He S, Mayden RL (2008) Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol 47:472–487

    CAS  PubMed  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE On-line integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455

    CAS  PubMed  Google Scholar 

  • Macey JR, Papenfuss TJ, Kuehl J, Fourcade HM, Boore JL (2004) Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Mol Phylogenet Evol 33:22–31

    CAS  PubMed  Google Scholar 

  • Minh Q, Nguyen M, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst 18:269–292

    Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    CAS  PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    CAS  PubMed  Google Scholar 

  • Okajima Y, Kumazawa Y (2010) Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol 10:141

    PubMed  PubMed Central  Google Scholar 

  • Podnar M, Pinsker W, Mayer W (2009) Complete mitochondrial genomes of three lizard species and the systematic position of the Lacertidae (Squamata). J Zool Syst Evol Res 47:35–41

    Google Scholar 

  • Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93

    PubMed  PubMed Central  Google Scholar 

  • Qian L, Wang H, Yan J, Pan T, Jiang S, Rao D, Zhang B (2018) Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes. BMC Genomics 19:354

    PubMed  PubMed Central  Google Scholar 

  • Park J, Koo K-S, Kim I-H, Park D (2016) Complete mitochondrial genomes of Scincella vandenburghi and S. huanrenensis (Squamata: Scincidae). Mitochondrial DNA Part B 1:237–238

    PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randi E, Lucchini V (1998) Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol 47:149–162

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Google Scholar 

  • Saccone C, Attimonelli M, Sbisà E (1987) Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. J Mol Evol 26:205–211

    CAS  PubMed  Google Scholar 

  • Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209

    CAS  PubMed  Google Scholar 

  • Savolainen P, Arvestad L, Lundeberg J (2000) mtDNA tandem repeats in domestic dogs and wolves: mutation mechanism studied by analysis of the sequence of imperfect repeats. Mol Biol Evol 17:474–488

    CAS  PubMed  Google Scholar 

  • Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140

    PubMed  Google Scholar 

  • Smith HM (2005) Plestiodon: a replacement name for most members of the genus Eumeces in North America. J Kans Herpetol Soc 14:15–16

    Google Scholar 

  • Song T, Zhang C, Huang X, Zhang B (2016) Complete mitochondrial genome of Eumeces elegans (Squamata: Scincidae). Mitochondrial DNA Part A 27:719–720

    CAS  Google Scholar 

  • Springer MS, Hollar LJ, Burk A (1995) Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol Biol Evol 12:1138–1150

    CAS  PubMed  Google Scholar 

  • Steinberg S, Cedergren R (1994) Structural compensation in atypical mitochondrial tRNAs. Nat Struc Biol 1:507–510

    CAS  Google Scholar 

  • Tang X-S, Yang D-C, Huang S (2019a) The complete mitochondrial genome of Sphenomorphus incognitus (Reptilia: Scincidae). Mitochondrial DNA Part B 4:307–308

    Google Scholar 

  • Tang X-S, Yang D-C, Lin Y-J, Dai L-L (2019b) The complete mitochondrial genome of Sphenomorphus indicus (Reptilia: Scincidae). Mitochondrial DNA Part B 4:2727–2728

    PubMed  PubMed Central  Google Scholar 

  • Telford MJ, Wise MJ, Gowri-Shankar V (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the Bilateria. Mol Biol Evol 22:1129–1136

    CAS  PubMed  Google Scholar 

  • Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263:285–289

    CAS  PubMed  Google Scholar 

  • Uetz P, Freed P, Hošek J (2019) The Reptile Database http://www.reptile-database.org. Accessed 13 January 2020

  • Wiens JJ, Hutter CR, Mulcahy DG, Noonan BP, Townsend TM, Sites JW Jr, Reeder TW (2012) Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett 8:1043–1046

    PubMed  PubMed Central  Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371

    CAS  PubMed  Google Scholar 

  • Wilkinson GS, Mayer F, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D-loop region of bat mitochondrial DNA. Genetics 146:1035–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    CAS  PubMed  Google Scholar 

  • Xu X, Ji H, Jin X, Cheng Z, Yao X, Liu Y, Zhao Q, Zhang T, Ruan J, Bu W, Chen Z, Gao S (2019) Using pan RNA-seq analysis to reveal the ubiquitous existence of 5’ and 3’ end small RNAs. Front Genet 10:105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Li H, Zhou K (2008) Evolution of the mitochondrial genome in snakes: gene rearrangements and phylogenetic relationships. BMC Genomics 9:569

    PubMed  PubMed Central  Google Scholar 

  • Yu X, Du Y, Fang M, Li H, Lin L (2018) The mitochondrial genome of Pseudocalotes microlepis (Squamata: Agamidae) and its phylogenetic position in agamids. Asian Herpetol Res 9:24–34

    Google Scholar 

  • Zhang C, Sun X, Chen L, Xiao W, Zhu X, Xia Y, Chen J, Wang H, Zhang B (2016) The complete mitochondrial genome of Eumeces chinensis (Squamata: Scincidae) and implications for Scincidae taxonomy. Mitochondrial DNA Part A 27:4691–4692

    CAS  Google Scholar 

  • Zhang D, Gao F, Li WX, Jakovlić I, Zou H, Zhang J, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20:348–355

    PubMed  Google Scholar 

  • Zhao E, Zhao K, Zhou K (1999) Fauna Sinica, Reptilia, vol 2: Squamata, Lacertilia. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Zheng Y, Wiens JJ (2016) Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol 94:537–547

    PubMed  Google Scholar 

  • Zhou T, Wan X, Guo X (2016) Sequencing and analysis of the whole mitochondrial genome of a variegated racerunner from Taklamakan Desert. Mitochondrial DNA Part A 27:3041–3042

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Matthew Brandley for his kind assistance in the fieldwork. This study was supported by the National Key Research and Development Program of China (2017YFC0505202) and the National Natural Science Foundation of China (31672270, 31872959).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dali Chen or Xianguang Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects by any of the authors. The animal experiment throughout the study was conducted according to the Chinese Ministry of Science and Technology Guiding Directives for Humane Treatment of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 15 kb)

Below is the link to the electronic supplementary material.

(PDF 1023 kb)

Below is the link to the electronic supplementary material.

(DOCX 22 kb)

(DOCX 16 kb)

(DOCX 23 kb)

(DOCX 17 kb)

(DOCX 27 kb)

Appendix

Appendix

Supplementary data to this article can be found online at https://doi.org/10.1007/s10709-020-00107-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liu, J., Chen, D. et al. Complete mitochondrial genome of a blue-tailed skink Plestiodon capito (Reptilia, Squamata, Scincidae) and comparison with other Scincidae lizards. Genetica 148, 229–241 (2020). https://doi.org/10.1007/s10709-020-00107-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-020-00107-1

Keywords

Navigation