Skip to main content

Advertisement

Log in

Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Environmental change is one of the primary issues faced by the farming community. Low rainfall and high temperature in arid and semiarid regions lead to the development of secondary salinisation, thus making the problem more severe. Under saline conditions, sodium is the most crucial cation that competes with potassium (K) and adversely affects plant metabolism by inhibiting plant enzymatic activities. Potassium-solubilising bacteria (KSB) play a vital role in solubilising fixed potassium and making it accessible to plants. In the current study, 42 KSB strains were isolated from paddy rhizosphere soil grown under salt-affected conditions. The plant-growth-promoting (PGP) properties of these rhizobacteria were also evaluated. Thirteen KSB strains, positive for all tested PGP traits, were evaluated for potassium solubilisation under sodium stress, namely, 0%, 3%, 5% and 7% NaCl stress. The five best strains (Acinetobacter pittii strain L1/4, A. pittii strain L3/3, Rhizobium pusense strain L3/4, Cupriavidus oxalaticus strain L4/12 and Ochrobactrum ciceri strain L5/1) based on the K-solubilising potential were identified by amplification, sequencing and bioinformatic analysis of the 16S rDNA sequences. The maximum potassium solubilisation was measured at 30 °C and pH 7 with glucose as carbon source. The application of these KSB strains significantly improved the shoot length, fresh weight, dry weight and chlorophyll contents of paddy plants grown under saline conditions. Hence, these strains could be halotolerant KSB bioinoculants that can be used to protect plants against salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedin, M. A., Habiba, U., & Shaw, R. (2013). Salinity scenario in Mekong, Ganges, and Indus river deltas. Community, Environment and Disaster Risk Management, 13, 115–138. https://doi.org/10.1108/S2040-7262(2013)0000013012.

    Article  Google Scholar 

  • Ahmad, M., Nadeem, S. M., Naveed, M., & Zahir, Z. A. (2016). Potassium-solubilizing bacteria and their application in agriculture. In Potassium Solubilizing Microorganisms for Sustainable Agriculture (pp. 293–313). Springer India. https://doi.org/10.1007/978-81-322-2776-2_21.

  • Ahmad, P. (2014). Oxidative damage to plants: antioxidant networks and signaling. In Oxidative Damage to Plants: Antioxidant Networks and Signaling. https://doi.org/10.1016/C2013-0-06923-X.

  • Albdaiwi, R. N., Khyami-Horani, H., Ayad, J. Y., Alananbeh, K. M., & Al-Sayaydeh, R. (2020). Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Oxidative Medicine and Cellular Longevity, 10, 1639. https://doi.org/10.3389/fmicb.2019.01639.

  • Ansari, M., Shekari, F., Mohammadi, M. H., Juhos, K., Végvári, G., & Biró, B. (2019). Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiologiae Plantarum, 41(12), 1–13. https://doi.org/10.1007/s11738-019-2988-5.

  • Arora, N. K., Fatima, T., Mishra, I., Verma, M., Mishra, J., & Mishra, V. (2018). Environmental sustainability: challenges and viable solutions. Environmental Sustainability, 1(4), 309–340. https://doi.org/10.1007/s42398-018-00038-w.

    Article  Google Scholar 

  • Ashraf, M., & Sultana, R. (2000). Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants. Biologia Plantarum, 43(4), 615–619. https://doi.org/10.1023/A:1002860202032.

    Article  CAS  Google Scholar 

  • Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. In Frontiers in Physiology (Vol. 8, issue JUL, p. 509). Frontiers media S.a. https://doi.org/10.3389/fphys.2017.00509.

  • Ayyam, V., Palanivel, S., Chandrakasan, S., Ayyam, V., Palanivel, S., & Chandrakasan, S. (2019). Approaches in land degradation management for productivity enhancement. In Coastal Ecosystems of the Tropics - Adaptive Management (pp. 463–491). Springer Singapore. https://doi.org/10.1007/978-981-13-8926-9_20.

  • Bakhshandeh, E., Pirdashti, H., & Lendeh, K. S. (2017). Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering, 103, 164–169. https://doi.org/10.1016/j.ecoleng.2017.03.008.

    Article  Google Scholar 

  • Baldani, J. I., Baldani, V. L. D., Seldin, L., & Dobereiner, J. (1986). Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic Bacteriology, 36(1), 86–93. https://doi.org/10.1099/00207713-36-1-86.

  • Barnawal, D., Maji, D., Bharti, N., Chanotiya, C. S., & Kalra, A. (2013). ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. Journal of Plant Growth Regulation, 32(4), 809–822. https://doi.org/10.1007/s00344-013-9347-3.

  • Batool, S., & Iqbal, A. (2019). Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var. galaxy 2013). Saudi Journal of Biological Sciences, 26(7), 1400–1410. https://doi.org/10.1016/j.sjbs.2018.05.024.

  • Bechtaoui, N., Raklami, A., Tahiri, A. I., Benidire, L., El Alaoui, A., Meddich, A., Göttfert, M., & Oufdou, K. (2019). Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biology Open, 8(7), bio043968. https://doi.org/10.1242/bio.043968.

    Article  CAS  Google Scholar 

  • Bharucha, U., Patel, K., & Trivedi, U. B. (2013). Optimization of Indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agricultural Research, 2(3), 215–221. https://doi.org/10.1007/s40003-013-0065-7.

  • Bhattacharya, S., Bachani, P., Jain, D., Patidar, S. K., & Mishra, S. (2016). Extraction of potassium from K-feldspar through potassium solubilization in the halophilic Acinetobacter soli (MTCC 5918) isolated from the experimental salt farm. International Journal of Mineral Processing, 152, 53–57. https://doi.org/10.1016/j.minpro.2016.05.003.

  • Deepa, C. K., Dastager, S. G., & Pandey, A. (2010). Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World Journal of Microbiology and Biotechnology, 26(7), 1233–1240. https://doi.org/10.1007/s11274-009-0293-y.

  • Dworkin, M., & Foster, J. W. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75(5), 592–603. https://doi.org/10.1128/jb.75.5.592-603.1958.

    Article  CAS  Google Scholar 

  • Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19), 7843–7853. https://doi.org/10.1093/nar/17.19.7843.

    Article  CAS  Google Scholar 

  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. In Frontiers in Microbiology (Vol. 10, p. 2791). Frontiers media S.a. https://doi.org/10.3389/fmicb.2019.02791.

  • Ehmann, A. (1977). The van URK-Salkowski reagent - a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A, 132(2), 267–276. https://doi.org/10.1016/S0021-9673(00)89300-0.

    Article  CAS  Google Scholar 

  • Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - a review. In Journal of Soil Science and Plant Nutrition (Vol. 17, issue 4, pp. 897–911). Sociedad Chilena de la Ciencia del Suelo. https://doi.org/10.4067/S0718-95162017000400005.

  • Fatima, Z., Saleemi, M., Zia, M., Sultan, T., Aslam, M., & Riaz-Ur-Rehman, & Chaudhary, M. F. (2009). Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. African Journal of Biotechnology, 8(2), 219–225. https://doi.org/10.5897/AJB2009.000-9040.

  • Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. In Frontiers in Plant Science (Vol. 6, issue NOVEMBER). https://doi.org/10.3389/fpls.2015.00978.

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. In Science (Vol. 327, issue 5967, pp. 812–818). https://doi.org/10.1126/science.1185383.

  • Gomathi, R., & Rakkiyapan, P. (2011). Comparative lipid peroxidation, leaf membrane thermostability , and antioxidant system in four sugarcane genotypes differing in salt tolerance. International Journal of Plant Physiology and Biochemistry, 3(4), 67–74. http://www.academicjournals.org/ijppb

  • Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of INDOLEACETIC acid. Plant Physiology, 26(1), 192–195. https://doi.org/10.1104/pp.26.1.192.

    Article  CAS  Google Scholar 

  • Habib, S. H., Kausar, H., & Saud, H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International, 2016. https://doi.org/10.1155/2016/6284547.

  • Han, H. S., & Lee, K. D. (2005). Plant growth promoting rhizobacteria effect on antioxidant status , photosynthesis , mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1(3), 210–215 http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/210-215.pdf.

    Google Scholar 

  • Hosseinzadah, F., Satei, A., & Ramezanpour, M. R. (2011). Ffects of mycorhiza and plant growth promoting rhizobacteria on growth , Nutrients Uptake and Physiological Characteristics in Calendula officinalis L . 8(5), 947–953. https://www.cabdirect.org/cabdirect/abstract/20113346881

  • Ilangumaran, G., & Smith, D. L. (2017). Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. In Frontiers in Plant Science (Vol. 8). Frontiers media S.a. https://doi.org/10.3389/fpls.2017.01768.

  • Jafarzadeh, A. A., & Aliasgharzad, N. (2007). Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia, 62(5), 562–564. https://doi.org/10.2478/s11756-007-0111-7.

    Article  Google Scholar 

  • Jamil, M., Kyeong, B. L., Kwang, Y. J., Deog, B. L., Mi, S. H., & Eui, S. R. (2007). Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.). Pakistan Journal of Biological Sciences, 10(6), 910–914. https://doi.org/10.3923/pjbs.2007.910.914.

  • Jiang, H., Qi, P., Wang, T., Wang, M., Chen, M., Chen, N., Pan, L., & Chi, X. (2018). Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils. 3 Biotech, 8(11), 461. https://doi.org/10.1007/s13205-018-1485-7.

    Article  Google Scholar 

  • Kang, S. M., Shahzad, R., Bilal, S., Khan, A. L., Park, Y. G., Lee, K. E., Asaf, S., Khan, M. A., & Lee, I. J. (2019). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology, 19(1), 80. https://doi.org/10.1186/s12866-019-1450-6.

  • Liu, M., Liu, X., Cheng, B. S., Ma, X. L., Lyu, X. T., Zhao, X. F., Ju, Y. L., Min, Z., & Fang, Y. L. (2016). Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Spanish Journal of Agricultural Research, 14(4). https://doi.org/10.5424/sjar/2016144-9714.

  • Mahmood, A., Amaya, R., Turgay, O. C., Yaprak, A. E., Taniguchi, T., & Kataoka, R. (2019). High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere, 9, 10–17. https://doi.org/10.1016/j.rhisph.2018.10.004.

  • Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065.

    Article  Google Scholar 

  • Moran, R., & Porath, D. (1980). Chlorophyll determination in intact tissues using N,N -dimethylformamide. Plant Physiology, 65(3), 478–479. https://doi.org/10.1104/pp.65.3.478, Chlorophyll Determination in Intact Tissues UsingN,N-Dimethylformamide.

  • Mu’minah, B., Subair, H., & Fahruddin. (2015). Isolation and screening bacterial exopolysaccharide (EPS) from potato rhizosphere in highland and the potential as a producer indole acetic acid (IAA). Procedia Food Science, 3, 74–81. https://doi.org/10.1016/j.profoo.2015.01.007.

    Article  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Ashraf, M. (2010). Microbial ACC-deaminase: Prospects and applications for inducing salt tolerance in plants. In Critical Reviews in Plant Sciences (Vol. 29, issue 6, pp. 360–393). Taylor & Francis Group. https://doi.org/10.1080/07352689.2010.524518.

  • Nyoki, D., & Ndakidemi, P. A. (2018). Selected chemical properties of soybean rhizosphere soil as influenced by cropping systems, rhizobium inoculation, and the supply of phosphorus and potassium after two consecutive cropping seasons. International Journal of Agronomy, 2018. https://doi.org/10.1155/2018/3426571.

  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25–31. https://doi.org/10.5923/j.microbiology.20130301.04.

    Article  Google Scholar 

  • Parmar, P., & Sindhu, S. S. (2019). The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiology Journal, 36(2), 130–136. https://doi.org/10.1080/01490451.2018.1514442.

    Article  CAS  Google Scholar 

  • Paulucci, N. S., Gallarato, L. A., Reguera, Y. B., Vicario, J. C., Cesari, A. B., García de Lema, M. B., & Dardanelli, M. S. (2015). Arachis hypogaea PGPR isolated from argentine soil modifies its lipids components in response to temperature and salinity. Microbiological Research, 173, 1–9. https://doi.org/10.1016/j.micres.2014.12.012.

  • Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. In Physiologia Plantarum (Vol. 118, issue 1, pp. 10–15). https://doi.org/10.1034/j.1399-3054.2003.00086.x.

  • Perveen, S., Shahbaz, M., & Ashraf, M. (2010). Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pakistan Journal of Botany, 42(5), 3073–3081.

    CAS  Google Scholar 

  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282–295. https://doi.org/10.1111/1477-8947.12054.

    Article  Google Scholar 

  • Rajawat, M. V. S., Sing, S., Tyagi, S. P., & Saxena, A. K. (2016). A modified plate assay for rapid screening of potassium-solubilizing bacteria. In Pedosphere (Vol. 26, issue 5, pp. 768–773). Institute of soil science. https://doi.org/10.1016/S1002-0160(15)60080-7.

  • Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613–620. https://doi.org/10.1071/FP09249.

    Article  Google Scholar 

  • Reyes-Castillo, A., Gerding, M., Oyarzúa, P., Zagal, E., Gerding, J., & Fischer, S. (2019). Plant growth-promoting rhizobacteria able to improve NPK availability: Selection, identificatioand effects on tomato growth. Chilean Journal of Agricultural Research, 79(3), 473–485. https://doi.org/10.4067/S0718-58392019000300473.

    Article  Google Scholar 

  • Rodrigues, A. A., Araújo, M. V. F., Soares, R. S., de Oliveira, B. F. R., Ribeiro, I. D. A., Sibov, S. T., & Vieira, J. D. G. (2018). Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. Anais Da Academia Brasileira de Ciencias, 90(4), 3813–3829. https://doi.org/10.1590/0001-3765201820180319.

    Article  CAS  Google Scholar 

  • Saha, M., Maurya, B. R., Meena, V. S., Bahadur, I., & Kumar, A. (2016). Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatalysis and Agricultural Biotechnology, 7, 202–209. https://doi.org/10.1016/j.bcab.2016.06.007.

    Article  Google Scholar 

  • Saiyad, S. A., Jhala, Y. K., & Vyas, R. V. (2015). Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. International Journal of Scientific and Research Publications, 5(2), 1–6 https://www.academia.edu/11324404/Comparative_efficiency_of_five_potash_and_phosphate_solubilizing_bacteria_and_their_key_enzymes_useful_for_enhancing_and_improvement_of_soil_fertility.

    Google Scholar 

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. In Saudi Journal of Biological Sciences (Vol. 22, issue 2, pp. 123–131). Elsevier. https://doi.org/10.1016/j.sjbs.2014.12.001.

  • Siyal, et al. (2002). Effect of compactions on infiltration characteristics of soil. Asian Journal of Plant Sciences, 1(1), 3–4. https://doi.org/10.3923/ajps.2002.3.4.

    Article  Google Scholar 

  • Son, H. J., Park, G. T., Cha, M. S., & Heo, M. S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204–210. https://doi.org/10.1016/j.biortech.2005.02.021.

  • Sperberg, J. I. (1958). The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9(6), 778–781. https://doi.org/10.1071/AR9580778.

    Article  Google Scholar 

  • Sukweenadhi, J., Purwanto, M. G. M., Hardjo, P. H., Kurniawan, G., & Artadana, I. B. M. (2019). Isolation and in vitro screening of plant growth promoting rhizobacteria from Barak Cenana red rice. AIP Conference Proceedings, 2155, 10001. https://doi.org/10.1063/1.5125541.

  • Szabo, S., Hossain, M. S., Adger, W. N., Matthews, Z., Ahmed, S., Lázár, A. N., & Ahmad, S. (2016). Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. Sustainability Science, 11(3), 411–421. https://doi.org/10.1007/s11625-015-0337-1.

    Article  Google Scholar 

  • Teshome, B., Wassie, M., & Abatneh, E. (2017). Isolation, screening and biochemical characterization of phosphatesolubilizing rhizobacteria associated with Coffea arabica L. Journal of Fertilizers & Pesticides, 08(03). https://doi.org/10.4172/2471-2728.1000188.

  • Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current Microbiology, 59(5), 489–496. https://doi.org/10.1007/s00284-009-9464-1.

    Article  CAS  Google Scholar 

  • Vincent, J. M., & Humphrey, B. (1970). Taxonomically significant group antigens in rhizobium. Journal of General Microbiology, 63(3), 379–382. https://doi.org/10.1099/00221287-63-3-379.

    Article  CAS  Google Scholar 

  • Volkmar, K. M., Hu, Y., & Steppuhn, H. (1998). Physiological responses of plants to salinity: a review. In Canadian Journal of Plant Science (Vol. 78, issue 1, pp. 19–27). https://doi.org/10.4141/P97-020.

  • Wakeel, A. (2013). Potassium-sodium interactions in soil and plant under saline-sodic conditions. In Journal of Plant Nutrition and Soil Science (Vol. 176, issue 3, pp. 344–354). https://doi.org/10.1002/jpln.201200417.

  • Wang, W., Xu, Y., Chen, T. X., Xing, L., Xu, K., Ji, D., Chen, C., & Xie, C. (2019). Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions. Science of the Total Environment, 662, 168–179. https://doi.org/10.1016/j.scitotenv.2019.01.214.

  • Xue, Z., & Akae, T. (2010). Effect of soil water content and salinity on daily evaporation from soil column. Journal of American Science, 6(8), 576–580 http://www.americanscience.org.

  • Yahaghi, Z., Shirvani, M., Nourbakhsh, F., de la Peña, T. C., Pueyo, J. J., & Talebi, M. (2018). Isolation and characterization of Pb-solubilizing bacteria and their effects on pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation. Journal of Microbiology and Biotechnology, 28(7), 1156–1167. https://doi.org/10.4014/jmb.1712.12038.

  • Yasmin, S., Zaka, A., Imran, A., Zahid, M. A., Yousaf, S., Rasul, G., Arif, M., & Mirza, M. S. (2016). Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS One, 11(8), e0160688. https://doi.org/10.1371/journal.pone.0160688.

    Article  CAS  Google Scholar 

  • Youseif, S. H. (2018). Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Annals of Agricultural Sciences, 63(1), 25–35. https://doi.org/10.1016/j.aoas.2018.04.002.

    Article  Google Scholar 

  • Zhang, C., & Kong, F. (2014). Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology, 82, 18–25. https://doi.org/10.1016/j.apsoil.2014.05.002.

    Article  Google Scholar 

  • Zhang, T., Hu, F., & Ma, L. (2019). Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Sciences, 14(1), 246–254. https://doi.org/10.1515/biol-2019-0028.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was partly financed by Research University Grant, Universiti Sains Malaysia, 1001/PBiologi/8011006. The authors would like to acknowledge the School of Biological Sciences, Universiti Sains Malaysia, for providing research facilities and technical assistance.

Availability of data and material

Relevant data is submitted on the NCBI website and accession nos. included.

Funding

Part of the analysis of this study was funded by research university grant, Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Ashfaq is the first author; Hasnuri Mat Hassan is PhD research supervisor; Amir Hamzah Ahmad Ghazali is cosupervisor; Maqshoof Ahmad provided technical support in conducting experiments.

Corresponding authors

Correspondence to Muhammad Ashfaq or Hasnuri Mat Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashfaq, M., Hassan, H.M., Ghazali, A.H.A. et al. Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 192, 697 (2020). https://doi.org/10.1007/s10661-020-08655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08655-x

Keywords

Navigation