Skip to main content

Advertisement

Log in

Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: a case study in Rayong province, eastern Thailand

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The rapid development of Rayong Province has resulted in increased demands on groundwater usage. This has potentially induced the release of contaminants such as arsenic (As), among others (i.e., NO3, PO43−) from various land use types—especially in intensive agricultural areas and heavy industrial areas, including landfill sites. The objectives of this research are to investigate the As speciation and groundwater chemistry occurring due to different hydrogeological settings and the influence of human activities and to explain the mechanism of As release in the coastal alluvial aquifers in Rayong Province using multivariate statistical techniques and hydrogeochemical modeling (PHREEQC). Six major water facies, mainly consisting of Ca–Na–HCO3–Cl and Ca–Na–Cl, were included in the hydrochemical analysis. Arsenic levels were inversely correlated with NO3, SO42−, DO, and ORP, confirming the reducing environment in the groundwater system. The results from the PHREEQC model show that most wells were strongly under-supersaturated with respect to arsenorite, scorodite, and arsenic pentoxide. Arsenic (As) is probably derived from the dissolution of Fe oxide and hydroxide (i.e., Fe(OH)3, goethite, maghemite, and magnetite). The multivariate statistical techniques revealed that the As species mainly consisted of As(III), governed by the reducing environment, while As(V) may be desorbed from Fe oxide and hydroxide as the pH increases. Anthropogenic inputs and intensive pumping may enhance the reducing environment, facilitating the release of As(III) into the groundwater. The knowledge gained from this study helps to better understand the mechanisms of As contamination in coastal groundwater aquifers, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agency USEP. (2001). Drinking water standard for arsenic. USEPA Fact Sheet (pp. 3).

  • Amarathunga, K. C., Berg, M., Winkel, L., Hug, S. J., Hoehn, E., Yang, H., et al. (2019). Statistical modeling of global geogenic arsenic contamination in groundwater. Environmental Science and Technology, 42, 3669–3675.

    Google Scholar 

  • Andrade, A., & Stigter, T. (2013). The distribution of arsenic in shallow alluvial groundwater under agricultural land in central Portugal: Insights from multivariate geostatistical modeling. Science of the Total Environment, 449, 37–51.

    CAS  Google Scholar 

  • American Public Health Association (APHA). (2012). Standard methods for the examination of water and wastewater, 22nd edition. In E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri (Eds.), American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, DC, USA.

  • Agoubi, B., Kharroubi, A., Abichou, T., & Abida, H. (2013). Hydrochemical and geoelectrical investigation of Marine Jeffara aquifer, southeastern Tunisia. Applied Water Science, 3, 415–429.

    CAS  Google Scholar 

  • Appelo, C. A. J. (1994). Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resources. Research, 20, 2793–2805.

    Google Scholar 

  • Appelo, C., & Postma, D. (1993). Geochemistry, groundwater and pollution. Leiden: Taylor and Francis.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, Groundwater and Pollution (2nd ed.). Rotterdam: CRC Press.

    Google Scholar 

  • Aruga, R., Gastaldi, D., Negro, G., & Ostacoli, G. (1995). Pollution of a river basin and its evolution with time studied by multivariate statistical analysis. Analytical Chimica Acta, 3, 15–25.

    Google Scholar 

  • Association of Official Analytical Chemists. (2002). Guidelines for single laboratory validation of chemical method for dietary supplements and botanical: Virginia, 38.

  • Biswas, A., Gustafsson, J. P., Neidhardt, H., Halder, D., Kundu, A. K., Chatterjee, D., et al. (2014a). Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Research, 55, 30–39.

    CAS  Google Scholar 

  • Benner, S. G., Polizzotto, M. L., Kocar, B. D., Ganguly, S., Phan, K., Ouch, K., et al. (2008). Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 23, 3072–3087.

    CAS  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Routh, J. (2002). Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bull Environmental Contamination and Toxicology, 69, 538–545.

    CAS  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Routh, J. (2006). Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study. Science of the Total Environment, 409(22), 4818–4830.

    Google Scholar 

  • Biswas, C., Zuo, X., Chen, S. C., Schibeci, S. D., Forwood, J. K., Jolliffe, K. A., et al. (2014b). Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Fungal Genetics and Biology, 67, 71–81.

    CAS  Google Scholar 

  • Boonsrang, A., Chotpantarat, S., & Sutthirat, C. (2018). Factors controlling the release of metals and a metalloids from the tailings of a gold mine in Thailand. Geochemistry-Exploration Environmental Analysis, 18(2), 109–119.

    CAS  Google Scholar 

  • Charlet, L., & Polya, D. A. (2006). Adsorption and heterogeneous reduction of arsenic at the phyllosilicate-water interface. In P. O’Day, D. Vlassopoulos, X. Meng, L. G. Benning (Eds.), Advances in Arsenic research: Integration of experimental and observational studies and implications for mitigation. American Chemical Society Symposium Series (Vol. 915, pp. 41–59).

  • Chotpantarat, S., & Amasvata, C. (2020). Influence of pH on transport of arsenate (As5+) through different reactive media using column experiments and transport modeling. Scientific Reports, 10(1), 3512.

    CAS  Google Scholar 

  • Chotpantarat, S., & Boonkaewwan, S. (2018). Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrological Sciences Journal, 63(9), 1386–1407.

    CAS  Google Scholar 

  • Chotpantarat, S., & Chanyatha, S. (2003). The effect of land use change of floods in phetchaburi River Basin. Paper presented at The 41th Kasetsart University Annual Conference, 3–7 Febuary, 2003.

  • Chotpantarat, S., Chunhacherdchai, L., & Tongcumpou, C. (2015). Effects of humic acid amendment on the mobility of heavy metals (Co. Cu, Cr, Mn, Ni, Pb, Zn) in gold mine tailings in Thailand. Arabian Journal of Geosciences, 8, 7589–7600.

    CAS  Google Scholar 

  • Chotpantarat, S., & Kiatvarangkul, N. (2018). Facilitated transport of cadmium with montmorillonite KSF colloids under different pH conditions in water-saturated sand columns: Experiment and transport modeling. Water Research, 146, 216–231.

    CAS  Google Scholar 

  • Chotpantarat, S., Limpakanwech, C., & Sutthirat, C. (2011). Effect of soil water characteristic curves on simulation of nitrate vertical transport in a Thai agricultural soil. Sustainable Environmental Research, 21(3), 187–193.

    CAS  Google Scholar 

  • Chotpantarat, S., Parkchai, T., & Wisitthammasri, W. (2020). Multivariate statistical analysis of hydrochemical data and stable isotopes of groundwater contaminated with nitrate at Huay Sai royal development study center and adjacent areas in Phetchaburi Province, Thailand. Water, 12(4), 1127.

    CAS  Google Scholar 

  • Chotpantarat, S., Wongsasuluk, P., Siriwong, W., Borjan, M., & Robson, M. (2014). Non-carcinogenic risk map of heavy metals contaminated in shallow groundwater for adult and aging population at agricultural area in northeastern, Thailand. Human and Ecological Risk Assessment, 20(3), 689–703.

    CAS  Google Scholar 

  • Couture, R.-M., Gobeil, C., & Tessier, A. (2013). Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochimica Cosmochimica Acta, 74, 1238–1255.

    Google Scholar 

  • Cummings, D. E., Caccavo, F., Fendorf, S., & Rosenzweig, R. F. (1999). Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environmental Science and Technology, 33(5), 723–729.

    CAS  Google Scholar 

  • Deng, Y. (2008). Geochemical processes of high arsenic groundwater system at Western Hetao Basin. Ph.D. Thesis of China University of Geosciences, Wuhan (pp. 149).

  • Department of groundwater resources (DGR). (2010). The eastern seaboard groundwater management project; to assess groundwater potential, installation of groundwater contamination monitor, and development of remediation plan in the area of Rayong and Chonburi Provinces. Bangkok: Ministry of Natural Resources and Environment.

    Google Scholar 

  • Department of Mineral Resources (DMR). (2007). Geology of Thailand. Ministry of Natural Resources and Environment. Department of Mineral Resources (pp. 1–632).

  • Diwakar, J., Johnston, S. G., Burton, E. D., & Shrestha, S. D. (2015). Arsenic mobilization in an alluvial aquifer of the Terai region Nepal. Journal of Hydrology, 4, 59–79.

    Google Scholar 

  • Duan, Y., Gan, Y., Wang, Y., Deng, Y., Guo, X., & Dong, C. (2015). Temporal variation of groundwater level and arsenic concentration at Jianghan Plain, central China. Journal of Geochem Exploration, 149, 106–119.

    CAS  Google Scholar 

  • Farooq, S. H., Chandrasekharam, D., Berner, Z., Norra, S., & Stüben, D. (2010). Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta. Water Research, 44, 5575–5588.

    CAS  Google Scholar 

  • Farsang, A., Puskás, I., & Szolnoki, Z. (2017). Human health risk assessment: A case study of heavy metal contamination of garden soils in Szeged. AGD Landscape and Environment, 3(1), 11–27.

    Google Scholar 

  • Fendorf, S., Michael, H. A., & van Geen, A. (2010). Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Journal of Science, 328, 1123–1127.

    CAS  Google Scholar 

  • Ferguson, J. C., & Gavis, D. (1972). A new role for sulfur in arsenic cycling. Environmental Science and Technology, 42, 81–85.

    Google Scholar 

  • Foley, N. K., & Ayuso, R. A. (2008). Mineral sources and transport pathways for arsenic release in a coastal watershed, USA. Geochemistry-Exploration Environment, 8(1), 59–75.

    CAS  Google Scholar 

  • Gan, Y., Wang, Y., Duan, Y., Deng, Y., Guo, X., & Ding, X. (2014). Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. Journal of Geochemical Exploration, 138, 81–93.

    CAS  Google Scholar 

  • Guo, H., Wen, D., Liu, Z., Jia, Y., & Guo, Q. (2014). A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Applied Geochemistry, 41, 196–217.

    CAS  Google Scholar 

  • Guo, H., Yang, S., Tang, X., Li, Y., & Shen, Z. (2007). Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Science of Total Environment, 393, 131–144.

    Google Scholar 

  • Harte, P. T., Ayotte, J. D., Hoffman, A., Revesz, K. M., Belaval, M., & Lamb, S. (2012). Heterogeneous redox conditions, arsenic mobility, and groundwater flow in fractured-rock aquifer near a waste repository site in New Hampshire, USA. Hydrogeology Journal, 20, 1189–1201.

    CAS  Google Scholar 

  • Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural arsenic in global groundwaters: Distribution and geochemical triggers for mobilization. Current Pollution Report, 2, 68–89.

    CAS  Google Scholar 

  • Hering, J. G., & Kneebone, P. E. (2002). Biogeochemical controls on arsenic occurrence and mobility in water supplies. Environmental Chemistry of Arsenic (pp. 155–181). New York: Marcel Dekker.

    Google Scholar 

  • I.B.M. Corp. (2013). IBM SPSS statistics for windows, version 20.0. Armonk: IBM Corp.

  • Ishaku, J., & Matazu, H. I. (2012). Interpretation of groundwater quality in Fufore, Northeastern Nigeria. International Journal of Earth Science and Engineering, 5, 373–382.

    CAS  Google Scholar 

  • Jiang, Y., Guo, H., Jia, Y., Cao, Y., & Hu, C. (2015). Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin Inner Mongolia. Geochemistry, 75(2), 197–205.

    CAS  Google Scholar 

  • Kao, Y. H., Wang, S. W., Maji, S. K., Liu, C. W., Wang, P. L., Chang, F. J., et al. (2011). Biogeochemical controls on arsenic occurrence and mobility in water supplies. Environmental Chemistry of Arsenic (pp. 155–181). New York: Marcel Dekker.

    Google Scholar 

  • Kao, Y. H., Wang, S. W., Maji, S. K., Liu, C. W., Wang, P. L., Chang, F. J., et al. (2013). Hydrochemical, mineralogical and isotopic investigation of arsenic distribution and mobilization in the Guandu wetland of Taiwan. Journal of Hydrology., 498, 274–286.

    CAS  Google Scholar 

  • Kim, K.-W., Chanpiwat, P., Hanh, H., Phan, K., & Sthiannopkao, S. (2011). Arsenic geochemistry of groundwater in Southeast Asia. Frontiers of Medicine, 5, 420–433.

    Google Scholar 

  • Kim, H. S., & Park, S. R. (2016). Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water, 8, 345.

    Google Scholar 

  • Kim, J. H., et al. (2017). Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer. Vietnam., 549, 703–714.

    CAS  Google Scholar 

  • Lawson, M., Polya, D. A., Boyce, A. J., Bryant, C., Mondal, D., Shantz, A., et al. (2013). Pond-derived organic carbon driving changes in arsenic hazard found in Asian Groundwater. Environmental Science and Technology, 47, 7085–7094.

    CAS  Google Scholar 

  • Lenntech, A. (2016). Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: Implications for As retention. Geochimica Cosmochimica Acta, 75(3), 870–886.

    Google Scholar 

  • Li, Z., Feng, X., Li, G., Bi, X., Zhu, J., Qin, H., et al. (2013a). Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central, China. Environmental Pollution, 182, 408–416.

    CAS  Google Scholar 

  • Li, P., Wu, B., & Qian, G. (2013b). Abundance and diversity of sulfate-reducing bacteria in high arsenic shallow aquifers. Geomicrobiology Journal, 31, 802–812.

    Google Scholar 

  • Lin, Z. X., & Puls, R. W. (2003). Potential indicators for the assessment of arsenic natural attenuation in the subsurface. Advances in Environmental Research, 7, 825–834.

    CAS  Google Scholar 

  • Mahmoud, K. (2015). Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints. Journal of Contaminant. Hydrology, 177, 122–135.

    Google Scholar 

  • Masipan, T., Chotpantarat, S., & Boonkaewwan, S. (2016). Experimental and modelling investigations of tracer transport in variably saturated agricultural soil of Thailand: Column study. Sustainable Environmental Research, 26, 97–101.

    CAS  Google Scholar 

  • Matiatos, I., Paraskevopoulou, V., Lazogiannis, K., Botsou, F., Dassenakis, M., Ghionis, G., et al. (2018). Surface-groundwater interactions and hydrogeochemical evolution in a fluvio-deltaic setting: The case study of the Pinios River delta. Journal of Hydrology, 561, 236–249.

    CAS  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2001). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Journal of Applied Geochemistry, 19(8), 1255–1293.

    Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Journal of Applied Geochemistry, 19(8), 1255–1293.

    CAS  Google Scholar 

  • Mladenov, N., Zheng, Y., Simone, B., Bilinski, T. M., McKnight, D. M., Nemergut, D., et al. (2015). Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility. Environmental Science and Technology, 49, 10815–10824.

    CAS  Google Scholar 

  • Morelli, G., Rimondi, V., Benvenuti, M., Medas, D., Costagliola, P., & Gasparon, M. (2017). Experimental simulation of arsenic desorption from quaternary aquifersediments following sea water intrusion. Apply Geochemistry, 87, 176–187. https://doi.org/10.1016/j.apgeochem.2017.10.024.

    Article  CAS  Google Scholar 

  • Narany, T. S., Ramli, M. F., Aris, A. Z., Sulaiman, W. N. A., Juahir, H., & Fakharian, K. (2014). Identification of hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistiacal techniques, in Amol-Babol Plain, Iran. Science World Journal, 419058, 1–15.

    Google Scholar 

  • Neidhardt, A., Sbarbati, C., Colombani, N., & Petitta, M. (2018). Efficiency verification of a horizontal flow barrier via flowmeter tests and multilevel sampling. Hydrological Processes, 27(17), 2414–2421.

    Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Journal of Applied Geochemistry, 15, 403–413.

    CAS  Google Scholar 

  • Omo-Irabor, O. O., Olobaniyi, S. B., Oduyemi, K., & Akunna, J. (2008). Surface and groundwater quality assessment using multivariate analytical methods: A case study of the Western Niger Delta, Nigeria. Physics and Chemistry Earth Parts A/B/C, 33(8–13), 666–673.

    Google Scholar 

  • Pedersen, H. D., Postma, D., & Jakobsen, R. (2006). Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica Cosmochimica Acta, 70, 4116–4129.

    CAS  Google Scholar 

  • Parkhurst, D. L., & Appello, C. A. J. (2013). User‘s guide to PHREEQC (version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey-Water Resources Investigations Report. 99-4259. Denver, Colorado (p. 312).

  • Petrus, M. L., & Warchol, C. F. (2005). Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proceedings of the National Acadamy of Science U. S. A., 102, 18819–18823.

    Google Scholar 

  • Pfenning, K. S., & McMahon, P. B. (1996). Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. Journal of Hydrology, 187, 283–295.

    Google Scholar 

  • Postma, D., Pham, T. K. T., Sø, H. U., Hoang, V. H., Vi, M. L., Nguyen, T. T., et al. (2016). A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochimica Cosmochimica Acta, 195, 277–292.

    CAS  Google Scholar 

  • Postma, D., Mai, N. T. H., Lan, V. M., Pham, T. K. T., Sø, H. U., Nhan, P. Q., et al. (2017). Fate of arsenic during red river water infiltration into aquifers beneath Hanoi, Vietnam. Environmental Science and Technology, 51, 838–845.

    CAS  Google Scholar 

  • Rahman, D., Rudnick, R. L., & Gao, S. (2014). Composition of the continental crust. In R. L. Rudnick, H. D. Holland, & K. K. Turekian (Eds.), The Crust Vol 4 Treatise on Geochemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Ratchawang, S., & Chotpantarat, S. (2019a). The leaching potential of pesticide in Song Phi Nong district, Suphan Buri province, Thailand. Environmental Asia, 12, 112–120.

    Google Scholar 

  • Ratchawang, S., & Chotpantarat, S. (2019b). Nitrate contamination in groundwater in sugarcane field, Suphan Buri province, Thailand. International Journal of Recent Technology and Engineering, 8, 239–242.

    Google Scholar 

  • Sae-Ju, J., Chotpantarat, S., & Thitimakorn, T. (2020). Hydrochemical, geophysical and multivariate statistical investigation of the seawater intrusion in the coastal aquifer at Phetchaburi Province, Thailand. Journal of Asian Earth Sciences, 191, 1–16.

    Google Scholar 

  • Selvakumar, R. (2017). As(V) removal using carbonized yeast cells containing silver nanoparticles. Water Research, 45(2), 583–592.

    Google Scholar 

  • Singh, C. K., Shashtri, S., & Mukherjee, S. (2011). Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab India. Environ. Journal of Earth Science, 62, 1387–1405.

    CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2003). A review of the source, behaviour and distribution of arsenic in natural waters. Journal of Applied Geochemistry, 17(5), 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5.

    Article  Google Scholar 

  • Sonthiphand, P., Ruangroengkulrith, S., Mhuantong, W., Charoensawan, V., Chotpantarat, S., & Boonkaewwan, S. (2019). Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environmental Science and Pollution Research, 26(26), 26765–26781.

    CAS  Google Scholar 

  • Sø, H. U., Postma, D., Lan, V. M., Trang, P. T. K., Kazmierczak, J., Nga, D. V., et al. (2018). Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age. Geochimica Cosmochimica Acta, 225, 192–209.

    Google Scholar 

  • Sracek, B., Smedley, P. L., & Kinniburgh, D. G. (2004). Chapter 12 Arsenic in groundwater and the environment. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology (Revised ed.). Berlin: Springer.

    Google Scholar 

  • Stuckey, J. W., Schaefer, M. V., Kocar, B. D., Benner, S. G., & Fendorf, S. (2015). Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geosciences journal, 9, 70–76.

    Google Scholar 

  • Stollenwerk, K. G., & Welch, A. H. (2003). Geochemical processes controlling transport of arsenic in groundwater: A review of adsorption, arsenic in groundwater.. Dordrecht: Kluwer.

  • Subyani, S. L., & Ahmadi, B. C. (2010). Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite. Geochimica Cosmochimica Acta, 74, 5171–5186.

    Google Scholar 

  • Tiankao, W., & Chotpantarat, S. (2018). Risk assessment of arsenic from contaminated soils to shallow groundwater in Ong Phra sub-district, Suphan Buri Province Thailand, Regional Studies. Journal of Hydrology, 19, 80–96.

    Google Scholar 

  • USGS. (2016). Geochemistry of arsenic, review of geochemical processes controlling arsenic mobility. Retrieved July 6, 2016 from https://or.water.usgs.gov/pubs_dir/Html/WRIR98-4205/as_report6.html

  • Waiyasusri, K., Yumuang, S., & Chotpantarat, S. (2016). Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani province, Thailand, using the CLUE-s model. Environmental Earth Science, 73, 533.

    Google Scholar 

  • Waleeittikul, A., Chotpantarat, S., & Ong, S. K. (2019). Impacts of salinity level and flood irrigation on Cd mobility through a Cd-contaminated soil, Thailand: Experimental and modeling techniques. Journal of Soils and Sediments, 19(5), 2357–2373.

    CAS  Google Scholar 

  • Wang, X., He, M., Xi, J., & Lu, X. (2012). Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, Hunan Province China. Microchemical Journal, 97(1), 4–11.

    Google Scholar 

  • Wang, Y., Pi, K., Fendorf, S., Deng, Y., & Xie, X. (2017). Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2017.10.007.

    Article  Google Scholar 

  • Welch, A. H., Lico, S. M., & Hughes, J. L. (1988). Arsenic in groundwater of the Western United States. Ground Water Journal, 26, 333–346.

    CAS  Google Scholar 

  • Welch, A. H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in groundwater of the United States: Occurrence and geochemistry. Ground Water Journal, 38(4), 589–604.

    CAS  Google Scholar 

  • Weerasiri, T. (2012). Arsenic contamination in soils, water and plants surrounding gold mine at Wangsaphung, Loei Province, Thailand. Journal of Environmental Research and Development, 6(3), 381.

    CAS  Google Scholar 

  • WHO. (1993). Guideline for drinking water quality. (Vol. 1) Recommendations: World Health Organization.

  • Wikiniyadhanee, R., Chotpantarat, S., & Ong, S. K. (2015). Effects of kaolinite colloids on Cd2+ transport through saturated sand under varying ionic strength conditions: Column experiments and modeling approaches. Journal of Contaminant Hydrology, 182, 146–156.

    CAS  Google Scholar 

  • Williams, M. (2001). Arsenic in mine waters: An international study. Journal of Environmental Geology, 40, 267–278.

    CAS  Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36, 169–182.

    CAS  Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2018a). Using hair and fingernails in binary logistic regression for bio-monitoring of heavy metals/metalloid in groundwater in intensively agricultural areas, Thailand. Environmental Research, 162, 106–118.

    CAS  Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2018b). Using urine as a biomarker in human exposure risk associated with arsenic and other heavy metals contaminating drinking groundwater in intensively agricultural areas of Thailand. Environmental Geochemistry and Health, 40, 323–348.

    CAS  Google Scholar 

  • Yadav, A., Yadav, P. K., & Shukla, D. N. (2014). Investigation of heavy metal status in soil and vegetables grown in urban areas of Allahabad, Uttar Pradesh India. International Journal of Scientific Research, 3(9), 1–7.

    Google Scholar 

  • Zghibi, A., Merzougui, A., Zouhri, L., & Tarhouni, J. (2014). Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-east of Tunisia). Journal of African Earth Sciences, 89, 1–15.

    CAS  Google Scholar 

  • Zhang, J., Ma, T., Feng, L., Yan, Y., Abass, O. K., Wang, Z., et al. (2017). Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China. Science of the Total Environment, 584, 458–468.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge of the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0137/2558), National Research Council of Thailand (NRCT): NRCT5-RSA63001-06, the 90th Year Chulalongkorn University Scholarship, Chulalongkorn University, the Ratchadapisek Sompoch Endowment Fund (2020) under Microplastic Cluster, Chulalongkorn University, and the International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University for their invaluable supports in terms of facilities and scientific equipment. We would like to express our sincere thanks to the Office of Higher Education Commission (OHEC) and the S&T Postgraduate Education and Research Development Office (PERDO) for financial support. We also thank the Ratchadaphisek Somphot Endowment Fund, Chulalongkorn University for funding the Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srilert Chotpantarat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonkaewwan, S., Sonthiphand, P. & Chotpantarat, S. Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: a case study in Rayong province, eastern Thailand. Environ Geochem Health 43, 537–566 (2021). https://doi.org/10.1007/s10653-020-00728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00728-7

Keywords

Navigation