Skip to main content
Log in

Evaluating the Diversity and Breeding Prospects of Ukrainian Spring Camelina Genotypes

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract—Camelina or false flax (Camelina sativa) is one of the most promising oilseed crops as a feedstock for biofuel production. It is thought that this species originated in the Eastern European region, where this species emerged due to polyploidization or crossing between wild representatives of the Camelina genus. As a result, camelina is characterized by a low level of genetic diversity, which imposes limitations on breeding and improvement of this crop. Although there are some studies discussing genetic polymorphism among the existing camelina cultivars, the assessments of Ukrainian genotypes are scarce, although this region belongs to the center of C. sativa’s origin. For the first time, an integrated assessment of genetic diversity among Ukrainian camelina breeding lines and cultivars, as well as analyzed the morphometric and yield parameters of their seed oil and its fatty acid composition, has been performed. Based on the results of chromatographic analysis, two camelina genotypes (FEORZhYaF-2 and FEORZhYaFD) with seed lipids to a greater extent composed of fatty acids with a short carbon chain (below C18) have been distinguished. Genetic distances between the studied genotypes have also been identified using ISSR, SSR, and ILP (actin and β-tubulin) markers. The obtained data were compared with the crop productivity and morphometric parameters, which allowed for differentiating the most promising pairs of phenotypes for further cross breeding. For example, crossing the FEORZhYaF-2 and FEORZhYaFD breeding lines with the cultivars Mirazh and Peremoha in different combinations may hypothetically provide the trait of heterosis in the first generation. This approach to the analysis of camelina breeding samples and genetic resources may become a powerful instrument for improving the given oil-bearing crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Downey, R.K., The origin and description of the Brassica oilseed crops, in High and Low Erucic Acid Rapeseed Oils: Production, Usage, Chemistry, and Toxicological Evaluation, Kramer, J.K.G., Sauer, F.D., and Pigden, W.J., Eds., Toronto: Academic, 1983, pp. 1–20.

    Google Scholar 

  2. Carlson, A.S., Plant oils as feedstock alternatives to petroleum—a short survey of potential oil crop platforms, Biochimie, 2009, vol. 91, pp. 665–670. https://doi.org/10.1016/j.biochi.2009.03.021

    Article  CAS  Google Scholar 

  3. Warwick, S.I., Brassicaceae in agriculture, in Genetics and Genomics of the Brassicaceae, Schmidt, R., and Bancroft, I., Eds., New York: Springer Science+Business Media, 2011, pp. 33–65.

  4. Warwick, S.I., Gugel, R., McDonald, T., and Falk, K.C., Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada, Genet. Resour. Crop. Evol., 2006, vol. 53, pp. 297–312. https://doi.org/10.1007/s10722-004-6108-y

    Article  CAS  Google Scholar 

  5. Marillia, E.F., Francis, T., Falk, K.C., Smith, M., and Taylor, D.C., Palliser’s promise: Brassica carinata, an emerging western Canadian crop for delivery of new bio-industrial oil feedstocks, Biocatalysis Agricult. Biotechnol., 2014, vol. 3, no. 1, pp. 65–74. https://doi.org/10.1016/j.bcab.2013.09.012

    Article  Google Scholar 

  6. Gesch, R.W., Isbell, T.A., Oblath, E.A., Allen, B.L., Archer, D.W., Brown, J., Hatfield, J.L., Jabro, J.D., Kiniry, J.R., Long, D.S., and Vigil, M.F., Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock, Industr.Crop Prod., 2015, vol. 75, pp. 2–7. https://doi.org/10.1016/j.indcrop.2015.05.084

    Article  Google Scholar 

  7. Moser, B.R., Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope?, Lipid Technol., 2010, vol. 22, no. 12, pp. 270– 273. https://doi.org/10.1002/lite.201000068

    Article  CAS  Google Scholar 

  8. Berti, M., Gesch, R., Eynck, C., Anderson, J., and Cermak, S., Camelina uses, genetics, genomics, production, and management, Industr. Crop Prod., 2016, vol. 94, pp. 690–710. https://doi.org/10.1016/j.indcrop.2016.09.034

  9. Moser, B.R., Knothe, G., Vaughn, S.F., and Isbell, T.A., Production and evaluation of biodiesel from field pennycress (Thlaspi arvense L.) oil, Energy Fuels, 2009, vol. 23, pp. 4149–4155. https://doi.org/10.1021/ef900337g

    Article  CAS  Google Scholar 

  10. McGinn, M., Phippen, W.B., Chopra, R., Bansal, S., Jarvis, B.A., Phippen, M.E., Dorn, K.M., Esfahanian, M., Nazarenus, T.J., Cahoon, E.B., Durrett, T.P., Marks, M.D., and Sedbrook, J.C., Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop, Plant Biotechnol. J., 2019, vol. 17, no. 4, pp. 776–788. https://doi.org/10.1111/pbi.13014

    Article  CAS  PubMed  Google Scholar 

  11. Vollmann, J. and Eynck, C., Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering, Biotechnol. J., 2015, vol. 10, pp. 525–535. https://doi.org/10.1002/biot.201400200

    Article  CAS  PubMed  Google Scholar 

  12. Zubr, J., Oil-seed crop: Camelina sativa, Industr.Crop Prod., 1997, vol. 6, pp. 113–119. https://doi.org/10.1016/S0926-6690(96)00203-8

    Article  Google Scholar 

  13. Frohlich, A., Rice, B., Evaluation of Camelina sativa oil as a feedstock for biodiesel production, Industr.Crop Prod., 2005, vol. 21, pp. 25–31. https://doi.org/10.1016/j.indcrop.2003.12.004

    Article  CAS  Google Scholar 

  14. Gugel, R.K., Falk, K.C., Agronomic and seed quality evaluation of Camelina sativa in western Canada, Can. J. Plant Sci., 2006, vol. 86, pp. 1047–1058. https://doi.org/10.4141/P04-081

    Article  Google Scholar 

  15. The Biology of Camelina sativa (L.) Crantz (Camelina). A Companion Document to Directive 94-08 (Dir94-08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits, CFIA, Plant Bio-Safety     Office, Ottawa, ON, Canada, 2012. http://www.inspection.gc.ca/english/plaveg/bio/dir/ camelsate.shtml. Accessed April 4, 2013.

  16. Obour, K.A., Sintim, Y.H., Obeng, E., and Jeliazkov, D.V., Oilseed camelina (Camelina sativa L. Crantz): production systems, prospects and challenges in the USA Great Plains, Adv. Plants Agric. Res., 2015, vol. 2, no. 2, 00043. https://doi.org/10.15406/apar. 2015.02.00043

  17. Wittkop, B., Snowdon, R.J., and Friedt, W., Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe, Euphytica, 2009, vol. 170, pp. 131–140. https://doi.org/10.1007/s10681-009-9940-5

    Article  Google Scholar 

  18. Singh, S.P. and Singh, D., Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review, Renew. Sust. Energy Rev., 2010, vol. 14, pp. 200–216. https://doi.org/10.1016/j.rser.2009.07.017

    Article  CAS  Google Scholar 

  19. Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., and Fayaz, H., Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renew. Sustain. Ener. Rev., 2013, vol. 18, pp. 211–245. https://doi.org/10.1016/j.rser.2012.10.01

    Article  CAS  Google Scholar 

  20. Ratanapariyanuch, K., Clancy, J., Emami, S., Cutler, J., and Reaney, M.J.T., Physical, chemical, and lubricant properties of Brassicaceae oil, Eur. J. Lipid Sci. Technol., 2013, vol. 115, pp. 1005–1012. https://doi.org/10.1002/ejlt.201200422

    Article  CAS  Google Scholar 

  21. Iskandarov, U., Kim, H.J., and Cahoon, E.B., Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials, in Plants and BioEnergy, McCann, M.C., Buckeridge, M.S., and Cerpita N.C., Eds., New York: Springer, 2014, pp. 131–140.https://doi.org/10.1007/978-1-4614-9329-7_8

  22. Li, X., and Mupondwa, E., Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies, Sci. Total Environ., 2014, vol. 481, pp. 17–26. https://doi.org/10.1016/j.sci-totenv.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  23. Natelson, R.H., Wang, W.C., Roberts, W.L., and Ze-ring, K.D., Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil, Biomass Bioenergy, 2015, vol. 75, pp. 23–34. https://doi.org/10.1016/j.biombioe.2015.02.001

    Article  CAS  Google Scholar 

  24. IATA 2015 Report on Alternative Fuels, 10th ed., 2016, Montreal–Geneva: International Air Transport Association, ISBN 978-92-9252-870-6.

  25. Faure, J.D., Tepfer, M., Camelina, a Swiss knife for plant lipid biotechnology, OCL, 2016, vol. 23, no. 5, D503. https://doi.org/10.1051/ocl/2016023

    Article  Google Scholar 

  26. Weeks, D.P., Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus, Prog. Mol. Biol. Transl. Sci., 2017, vol. 149, pp. 65–80. https://doi.org/10.1016/bs.pmbts.2017. 05.002

  27. Yemets, A.I., Boychuk, Yu.N., Shysha, E.N., Rakhmetov, D.B., and Blume, Ya.B., Establishment of in vitro culture, plant regeneration, and genetic transformation of Camelina sativa,Cytol. Genet., 2013, vol. 47, no. 3, pp. 138–144. https://doi.org/10.3103/S0095452713030031

    Article  Google Scholar 

  28. Gehringer, A., Friedt, W., Lühs, W., and Snowdon, R.J., Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa), Genome, 2006, vol. 49, pp. 1555–1563. https://doi.org/10.1139/g06-117

    Article  CAS  PubMed  Google Scholar 

  29. Vollmann, J., Grausgruber, H., Stift, G., Dryzhyruk, V., and Lelley, T., Genetic diversity in Camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism, Plant Breed., 2005, vol. 124, pp. 446–453. https://doi.org/10.1111/j.1439-0523.2005.01134.x

    Article  CAS  Google Scholar 

  30. Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon’kova, N., and Francis, C., Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses, Genome, 2010, vol. 53, no. 7, pp. 558–567. https://doi.org/10.1139/G10-034

    Article  CAS  PubMed  Google Scholar 

  31. Manca, A., Galasso, I., Development of simple sequence repeat (SSR) markers in Camelina sativa (L.) Crantz, Minerva Biotec., 2010, vol. 22, pp. 43–45.

    Google Scholar 

  32. Galasso, I., Manca, A., Braglia, L., Martinelli, T., Morello, L., and Breviario, D., h–TBP: an approach based on intron–length polymorphism for the rapid isolation and characterization of the multiple members of the b–tubulin gene family in Camelina sativa (L.) Crantz, Mol. Breed., 2011, vol. 28, pp. 635–645. https://doi.org/10.1007/s11032-010-9515-0

    Article  CAS  Google Scholar 

  33. Manca, A., Pecchia, P., Mapelli, S., Masella, P., and Galasso, I, Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits, Genet. Resour. Crop Evol., 2012, vol. 60, pp. 1223– 1226. https://doi.org/10.1007/s10722-012-9913-8

    Article  CAS  Google Scholar 

  34. Singh, R., Bollina, V., Higgins, E.E., Clarke, W.E., Eynck, C., Sidebottom, C. Gugel R., Snowdon, R., and Parkin, I.A.P., Single-nucleotide polymorphism identification and genotyping in Camelina sativa,Mol. Breed., 2015, vol. 35, no. 1, pp. 1–13.https://doi.org/10.1007/s11032-015-0224-6

    Article  CAS  Google Scholar 

  35. Luo, Z., Brock, J., Dyer, J.M., Kutchan, T., Schachtman, D., Augustin, M., Ge, Y., Fahlgren, N., and Abdel-Haleem, H., Genetic diversity and population structure of a Camelina sativa spring panel, Front. Plant Sci., 2019, vol. 10, p. 184. https://doi.org/10.3389/fpls.2019.00184

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hutcheon, C., Ditt, R.F., Beilstein, M., Comai, L., Schroeder, J., Goldstein, E., Shewmaker, C.K., Nguyen, T., De Rocher, J., and Kiser, J. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes, BMC Plant Biol., 2010, vol. 10, p. 233. https://doi.org/10.1186/1471-2229-10-233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W.E., Tuteja, R., Spillane, C., Robinson, S.J., Links, M.G., Clarke, C., Higgins, E.E., Huebert, T., Sharpe, A.G., and Parkin, I.A., The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure, Nat. Commun., 2014, vol. 5, p. 3706. https://doi.org/10.1038/ncomms4706

    Article  CAS  PubMed  Google Scholar 

  38. Mándaková, T., Pouch, M., Brock, J.R., Al-Shehbaz, I.A., and Lysak, M.A., Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering, Plant Cell, 2019, vol. 31, no. 11, pp. 2596–2612. https://doi.org/10.1105/tpc.19.00366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaudhary, R., Koh, C.S., Kagale, S., Tang, L., Wu, S.W., Lv, Z., Mason, A.S., Sharpe, A.G., Die-derichsen, A., and Parkin, I.A.P., Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa, G3: Genes, Genomes,Genet., 2020, vol. 10, no. 4, pp. 1297–1308. https://doi.org/10.1534/g3.119.400957

    Article  Google Scholar 

  40. Kurasiak-Popowska, D., Tomkowiak, A., Czlopinska, M., Bocianowski, J., Weigt, D., and Nawracala, J., Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes, Industr.Crop Prod., 2018, vol. 123, pp. 667–675.https://doi.org/10.1016/j.indcrop.2018.07.001

    Article  CAS  Google Scholar 

  41. Rakhmetov, D.B., Blume, Ya.B., Yemets, A.I., Boi-chuk, Yu.M., Andrushchenko, O.L., Vergun, O.M., and Rakhmetova, S.O., Camelina sativa (L.) Crantz—valuable oil plant, Plant Introduction, 2014, vol. 2, no. 62, pp. 50–58.

    Google Scholar 

  42. Rakhmetov, D.B., Rahmetova, S.O., Boychuk, Yu.N., Blume, Ya.B., and Yemets, A.I., Physiological and morphological characteristics of new forms and varieties of spring false flax (Camelina sativa), Bull. Ukr. Soc. Genet. Breed., 2014, vol. 12, no. 1, pp. 65–77.

    Google Scholar 

  43. Blume, R.Ya., Boychuk, Yu.M., Yemets, A.I., Rakhmetova, S.O., Blume, Ya.B., and Rakhmetov, D.B., Comparative analysis of fatty acid composition for oils from seeds of tyfon, oil radish and camelina breeding forms and varieties as perspective source for biodiesel production, Factors Exp. Evol. Organisms, 2018, vol. 18, pp. 61–66.

    Google Scholar 

  44. Blume, R., Rakhmetov, D., Comparative analysis of oil fatty acid composition of Ukrainian spring Camelina sativa breeding forms and varieties as a perspective biodiesel source, Cruciferae Newslett., 2017, vol. 36, pp. 13–7.

    Google Scholar 

  45. Blume, R.Y., Lantukh, G.V., Levchuk, I.V., Rakhmetov, D.B., and Blume, Ya.B., Evaluation of potential biodiesel feedstocks from industrial Cruciferae: camelina, turnip rape, oil radish and tyfon, Open Agr. J., 2020, vol. 14 (in press).

  46. Bayer, G.Ya., Boichuk, Yu.M., Pirko, Ya.V., Korkhovoy, V.I., Rakhmetov, D.B., Yemets, A.I., and Blume, Ya.B., Analysis of breeding false flax (Camelina sativa (L.) Crantz) material with ISSR markers, Factors Exp. Evol. Organisms, 2014, vol. 14, pp. 146–150.

    Google Scholar 

  47. Sambrook, J., David, W.R.,Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 2001, vol. 2.

    Google Scholar 

  48. Shen, S. Genetic diversity analysis with ISSR PCR on green algae Chlorella vulgaris and Chlorella pyrenoidosa,Chin. J. Ocean. Limn., 2008, vol. 26, no. 4, pp. 380–384. https://doi.org/10.1007/s00343-008-0380-1

    Article  CAS  Google Scholar 

  49. Benbouza, H., Jacquemin, J.-M., Baudoin, J.-P., and Mergeai, G., Otimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels, Biotechnol. Agron. Soc. Environ., 2006, vol. 10, pp. 77–81. https://popups.uliege.be: 443/1780-4507/index. php?id=1128

    CAS  Google Scholar 

  50. Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., and Breviario, D., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, pp. 281–2891. https://doi.org/10.1139/g03-132

    Article  CAS  PubMed  Google Scholar 

  51. Breviario, D., Baird, W.V., Sangoi, S., Hilu, K., Blumetti, P., and Giani, S., High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns, Mol. Breed., 2007, vol. 20, pp. 249–259. https://doi.org/10.1007/s11032-007-9087-9

    Article  CAS  Google Scholar 

  52. Braglia, L.B., Manca, A.M., Mastromauro, F.M., and Breviario, D. cTBP: A successful intron length polymorphism (ILP)–based genotyping method targeted to well defined experimental needs, Diversity, 2010, vol. 2, pp. 572–585. https://doi.org/10.3390/d2040572

    Article  CAS  Google Scholar 

  53. Postovoitova, A.S., Yotka, O.Yu., Pirko, Ya.V., and Blume, Ya.B., Molecular genetic evaluation of Ukrainian flax cultivars homogeneity based on intron length polymorphism of actin genes and microsatellite loci, Cytol. Genet., 2018, vol. 52, no. 6, pp. 448–460. https://doi.org/10.3103/S0095452718060099

    Article  Google Scholar 

  54. Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., Polymorphism of actin gene introns as an instrument for genotyping of the representatives from Solanaceae family, Biol. Systems: Theor. Innov., 2018, no. 287, pp. 71–79. https://doi.org/10.31548/biologiya2018.287.071

  55. Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., Intron length polymorphism of actin genes as the efficient tool for an genetic profiling of selected cereals from the grass (Poaceae L.) Family, Dopov. Nats. Akad. Nauk. Ukr., 2019, vol. 2, pp. 78–83. https://doi.org/10.15407/dopovidi-2019.02.078

    Article  Google Scholar 

  56. Pleines, S. and Friedt, W., Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.), Fett./Lipid, 1988, vol. 90, pp. 167–171. https://doi.org/10.1002/lipi.19880900502

    Article  CAS  Google Scholar 

  57. Velasco, L., Goffman, F.D., and Becker, H.C., Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica,Genet. Resour. Crop Evol., 1998, vol. 45, pp. 371–382. https://doi.org/10.1023/A:1008628624867

    Article  Google Scholar 

  58. Pavlicek, A., Hrda, S., and Flegr, J., FreeTree–freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia, Folia Biol., 1999, vol. 45, pp. 97–99.

    CAS  Google Scholar 

  59. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 5269–5273. https://doi.org/10.1073/pnas.76.10.5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hongtrakul, V., Huestis, G.M., and Knapp, S.J., Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines, Theor. Appl. Genet., 1997, vol. 95, pp. 400–407.https://doi.org/10.1007/s001220050576

    Article  CAS  Google Scholar 

  61. Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J.R., Maciejewski, A., and Wishart, D.S., Heatmapper: web-enabled heat mapping for all, Nucleic Acids Res., 2016, vol. 44 (W1), pp. W147– W153. https://doi.org/10.1093/nar/gkw419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. An, D. and Suh, M.C., Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa,Plant Biotechnol. Rep., 2015, vol. 9, pp. 137–148. https://doi.org/10.1007/s11816-015-0351-x

    Article  Google Scholar 

  63. Khlestkina, E.K., Molecular markers in genetic studies and breeding, Russ. J. Genet. Appl. Res., 2014, vol. 4, no. 3, pp. 236–244. https://doi.org/10.1134/S2079059714030022

    Article  Google Scholar 

  64. van Tienderen, P.H., de Haan, A.A., van der Linden, C.G., and Vosman, B., Biodiversity assessment using markers for ecologically important traits, Trends Ecol. Evol., 2002, vol. 17, no. 12, pp. 577–582. https://doi.org/10.1016/S0169-5347(02)02624-1

    Article  Google Scholar 

  65. Grant, I. and Beversdorf, W.D., Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.), Can. J. Genet. Cytol., 1985, vol. 27, no. 4, pp. 472–478. https://doi.org/10.1139/g85-069

    Article  Google Scholar 

  66. Wolko, J., Dobrzycka, A., Bocianowski, J., and Bartkowiak-Broda, I., Estimation of heterosis for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.), Euphytica, 2019, vol. 215, p. 156. https://doi.org/10.1007/s10681-019-2482-6

    Article  CAS  Google Scholar 

  67. Gupta, P., Chaudhary, H.B., and Lal, S.K., Heterosis and combining ability analysis for yield and its components in Indian mustard (Brassica juncea L. Czern & Coss), Front. Agricult. China, 2010, vol. 4, pp. 299–307. https://doi.org/10.1007/s11703-010-1016-8

    Article  Google Scholar 

  68. Kibar, B., Karaagaz, O., and Kar, H., Heterosis for yield contributing head traits in cabbage (Brassica oleracea var. capitata), Cien. Inv. Agr., 2015, vol. 42, no. 2, pp. 205–216. https://doi.org/10.4067/S0718-16202015000200007

    Article  Google Scholar 

  69. Xie, F., Zha, J., Tang, H., Xu, Y., Liu, X., and Wan, Z., Combining ability and heterosis analysis for mineral elements by using cytoplasmic male-sterile systems in non-heading Chinese cabbage (Brassica rapa), Crop Pasture Sci., 2018, vol. 69, no. 3, pp. 296– 302.

    Article  CAS  Google Scholar 

  70. Zelt, N.H. and Schoen, D.J., Testing for heterosis in traits associated with seed yield in Camelina sativa,Can. J. Plant Sci., 2016, vol. 96, no. 4, pp. 525–529. https://doi.org/10.1139/CJPS-2015-0254

    Article  CAS  Google Scholar 

  71. Jain, A., Bhatia, S., Banga, S.S., Prakash, S., and Lakshmikumaran, M., Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis, Theor. Appl. Genet., 1994, vol. 88, pp. 116–122. https://doi.org/10.1007/BF00222403

    Article  CAS  PubMed  Google Scholar 

  72. Kawamura, K., Kawanabe, T., Shimizu, M., Nagano, A.J., Saeki, N., Okazaki, K., Kaji, M., Dennis, E.S., Osabe, K., and Fujimoto, R., Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis, Plant Gene, 2016, vol. 5, pp. 1–7. https://doi.org/10.1016/j.plgene.2015.10.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Y. Blume.

Ethics declarations

FUNDING

The study was supported by the project on the Integrated Assessment of Productivity Characteristics of Camelina as an Energy Feedstock for the Production of Diesel Biofuel Components Compared with Other Brassicaceae Oil Crops within the Target Integrated Interdisciplinary Program for Scientific Research of the National Academy of Sciences (NAS) of Ukraine for Elaborating Scientific Principles for the Rational Use of Natural Resource Potential and Sustainable Development (2015–2019) and the project for the Assessment of Technical Characteristics and Selection of Oil-Rich Plants and Microalgae for Biodiesel Production within the integrated target scientific-technological program of scientific research of the NAS of Ukraine—Biological Resources and Novel Technologies of Bioenergoconversion (2018–2022).

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they do not have any conflicts of interest. This article does not contain any studies conducted by any of the authors in animals or humans.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blume, R.Y., Rabokon’, A.M., Postovoitova, A.S. et al. Evaluating the Diversity and Breeding Prospects of Ukrainian Spring Camelina Genotypes. Cytol. Genet. 54, 420–436 (2020). https://doi.org/10.3103/S0095452720050084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720050084

Navigation