Skip to main content
Log in

Thermomechanics of Cosserat medium: modeling adiabatic shear bands in metals

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

During most metal manufacturing processes, the medium deforms by generating large quantities of plastic strain at relatively high strain rates, inevitably inducing rises in temperature. Metals characterized by low thermal conductivity properties might locally retain high temperatures, consequently undergoing thermal softening. The classical balance laws governing the continuum equilibrium show severe mesh sensitivity if they were numerically discretized through finite element methods. Furthermore, the plastic deformation tends to localize in narrow areas whose characteristic length is comparable to grain size, thereby requiring the adoption of theories able to predict size-effects. In this manuscript we demonstrate that the Cosserat medium is able to overcome these issues related to manufacturing processes simulation. We first provide a thermodynamically-consistent description of the Cosserat medium, and then we propose a method to calibrate the two additional characteristic lengths introduced by the Cosserat medium description by enriching the model with the TANH stress flow rule under adiabatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aldakheel, F., Miehe, C.: Coupled thermomechanical response of gradient plasticity. Int. J. Plast. 91, 1–24 (2017). https://doi.org/10.1016/j.ijplas.2017.02.007

    Article  Google Scholar 

  2. Ask, A., Forest, S., Appolaire, B., Ammar, K.: A Cosserat-phase-field theory of crystal plasticity and grain boundary migration at finite deformation. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0727-6

    Article  Google Scholar 

  3. Bauer, S., Dettmer, W.G., Perić, D., Schäfer, M.: Micropolar hyper-elastoplasticity: constitutive model, consistent linearization, and simulation of 3D scale effects. Int. J. Numer. Methods Eng. 91(1), 39–66 (2012). https://doi.org/10.1002/nme.4256

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahuc, O., Darnis, P., Laheurte, R.: Mechanical and thermal experiments in cutting process for new behaviour law. Int. J. Form. Process. 10(2), 235–269 (2007). https://doi.org/10.3166/ijfp.10.235-269

    Article  Google Scholar 

  5. Calamaz, M., Coupard, D., Girot, F.: A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 48(3–4), 275–288 (2008). https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  6. Chaboche, J.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989). https://doi.org/10.1016/0749-6419(89)90015-6

    Article  MATH  Google Scholar 

  7. Chambon, R., Caillerie, D., El Hassan, N.: One-dimensional localisation studied with a second grade model. Eur. J. Mech. A Solids 17(4), 637–656 (1998). https://doi.org/10.1016/S0997-7538(99)80026-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G., Ren, C., Yang, X., Jin, X., Guo, T.: Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model. Int. J. Adv. Manuf. Technol. 56(9–12), 1027–1038 (2011). https://doi.org/10.1007/s00170-011-3233-6

    Article  Google Scholar 

  9. Cheng, C., Mahnken, R.: A multi-mechanism model for cutting simulations based on the concept of generalized stresses. Comput. Mater. Sci. 100(PB), 144–158 (2015). https://doi.org/10.1016/j.commatsci.2014.12.028

    Article  Google Scholar 

  10. Cosserat, E., Cosserat, F.: Theorie des corps deformables. A. Hermann et fils (1909)

  11. de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8(4), 317–332 (1991). https://doi.org/10.1108/eb023842

    Article  Google Scholar 

  12. de Borst, R.: A generalisation of theory for polar continua. Comput. Methods Appl. Mech. Eng. 103(3), 347–362 (1993). https://doi.org/10.1016/0045-7825(93)90127-J

    Article  ADS  MATH  Google Scholar 

  13. De Borst, R., Mühlhaus, H.B.: Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35(3), 521–539 (1992). https://doi.org/10.1002/nme.1620350307

    Article  MATH  Google Scholar 

  14. de Borst, R., Sluys, L.J.: Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng. 90(1–3), 805–827 (1991). https://doi.org/10.1016/0045-7825(91)90185-9

    Article  ADS  Google Scholar 

  15. Dong, F., Wang, X., Yang, Q., Liu, H., Xu, D., Sun, Y., Zhang, Y., Xue, R., Krishnaswamy, S.: In-situ measurement of Ti–6Al–4V grain size distribution using laser-ultrasonic technique. Scr. Mater. 154, 40–44 (2018). https://doi.org/10.1016/j.scriptamat.2018.05.009

    Article  Google Scholar 

  16. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33(C), 295–361 (1997). https://doi.org/10.1016/S0065-2156(08)70388-0

    Article  MATH  Google Scholar 

  17. Forest, S., Barbe, F., Cailletaud, G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37(46–47), 7105–7126 (2000). https://doi.org/10.1016/S0020-7683(99)00330-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160(1–2), 71–111 (2003). https://doi.org/10.1007/s00707-002-0975-0

    Article  MATH  Google Scholar 

  19. Forest, S., Sievert, R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006). https://doi.org/10.1016/j.ijsolstr.2006.05.012

    Article  MathSciNet  MATH  Google Scholar 

  20. González, D., Alkorta, J., Martínez-Esnaola, J.M., Gil Sevillano, J.: Numerical analysis of the indentation size effect using a strain gradient crystal plasticity model. Comput. Mater. Sci. 82, 314–319 (2014). https://doi.org/10.1016/j.commatsci.2013.10.004

    Article  Google Scholar 

  21. Grammenoudis, P., Tsakmakis, C.: Hardening rules for finite deformation micropolar plasticity: restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin. Contin. Mech. Thermodyn. 13(5), 325–363 (2001). https://doi.org/10.1007/s001610100055

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Guo, Y.B., Wen, Q., Woodbury, K.A.: Dynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulations. J. Manuf. Sci. Eng. Trans. ASME 128(3), 749–759 (2006). https://doi.org/10.1115/1.2193549

    Article  Google Scholar 

  23. He, L., Su, H., Xu, J., Zhang, L.: Simulation analysis of the influence of dynamic flow stress behavior on chip formation. Int. J. Adv. Manuf. Technol. 95(5–8), 2301–2313 (2018). https://doi.org/10.1007/s00170-017-1275-0

    Article  Google Scholar 

  24. Hor, A., Morel, F., Lebrun, J.L., Germain, G.: Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range. Mech. Mater. 64, 91–110 (2013). https://doi.org/10.1016/j.mechmat.2013.05.002

    Article  Google Scholar 

  25. Huang, J., Kalaitzidou, K., Sutherland, J.W., Milligan, W.W., Aifantis, E.C., Sievert, R., Forest, S.: Gradient plasticity: implications to chip formation in machining. In: 4th International ESAFORM Conference on Material Forming, pp. 527–530 (2001)

  26. Jebahi, M., Cai, L., Abed-Meraim, F.: Strain gradient crystal plasticity model based on generalized non-quadratic defect energy and uncoupled dissipation. Int. J. Plast. 126(April 2019), 102617 (2019). https://doi.org/10.1016/j.ijplas.2019.10.005

    Article  Google Scholar 

  27. Joshi, S.S., Melkote, S.N.: An explanation for the size-effect in machining using strain gradient plasticity. J. Manuf. Sci. Eng. 126(4), 679 (2004). https://doi.org/10.1115/1.1688375

    Article  Google Scholar 

  28. Khoei, A.R., Yadegari, S., Biabanaki, S.O.: 3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory. Comput. Mater. Sci. 49(4), 720–733 (2010). https://doi.org/10.1016/j.commatsci.2010.06.015

    Article  Google Scholar 

  29. Koiter, W.T.: Couple stresses in the theory of elasticity, I & II. Philos. Trans. R. Soc. Lond. B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Kratochvíl, J., Labbé, E., Rey, C., Yang, S.: On physically motivated mesoscale Cosserat model of shear band formation. Scr. Mater. 41(7), 761–766 (1999). https://doi.org/10.1016/S1359-6462(99)00214-6

    Article  Google Scholar 

  31. Lele, S.P., Anand, L.: A large-deformation strain-gradient theory for isotropic viscoplastic materials. Int. J. Plast. 25(3), 420–453 (2009). https://doi.org/10.1016/j.ijplas.2008.04.003

    Article  MATH  Google Scholar 

  32. Li, J.C., Chen, X.W., Chen, G.: Numerical simulations on adiabatic shear behaviour of 921A steel pure shear hat-shaped specimens. WIT Trans. Built Environ. 113, 323–334 (2010). https://doi.org/10.2495/SU100281

    Article  Google Scholar 

  33. List, G., Sutter, G., Bi, X.F., Molinari, A., Bouthiche, A.: Strain, strain rate and velocity fields determination at very high cutting speed. J. Mater. Process. Technol. 213(5), 693–699 (2013). https://doi.org/10.1016/j.jmatprotec.2012.11.021

    Article  Google Scholar 

  34. Marchand, A., Duffy, J.: An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solids 36(3), 251–283 (1988). https://doi.org/10.1016/0022-5096(88)90012-9

    Article  ADS  Google Scholar 

  35. Molinari, A., Soldani, X., Miguélez, M.H.: Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J. Mech. Phys. Solids 61(11), 2331–2359 (2013). https://doi.org/10.1016/j.jmps.2013.05.006

    Article  ADS  Google Scholar 

  36. Mühlhaus, H.B., Vardoulakis, I.: The thickness of shear bands in granular. Géotechnique 37(3), 271–283 (1987). https://doi.org/10.1680/geot.1987.37.3.271

    Article  Google Scholar 

  37. Neff, P.: A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44(8–9), 574–594 (2006). https://doi.org/10.1016/j.ijengsci.2006.04.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen, G.D., Korsunsky, A.M., Belnoue, J.P.: A nonlocal coupled damage-plasticity model for the analysis of ductile failure. Int. J. Plast. 64, 56–75 (2015). https://doi.org/10.1016/j.ijplas.2014.08.001

    Article  Google Scholar 

  39. Pamin, J., Wcisło, B., Kowalczyk-Gajewska, K.: Gradient-enhanced large strain thermoplasticity with automatic linearization and localization simulations. J. Mech. Mater. Struct. 12(1), 123–146 (2017). https://doi.org/10.2140/jomms.2017.12.123

    Article  MathSciNet  Google Scholar 

  40. Peirs, J., Verleysen, P., Degrieck, J., Coghe, F.: The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V. Int. J. Impact Eng. 37(6), 703–714 (2010). https://doi.org/10.1016/j.ijimpeng.2009.08.002

    Article  Google Scholar 

  41. Poole, W., Ashby, M., Fleck, N.: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34(4), 559–564 (1996). https://doi.org/10.1016/1359-6462(95)00524-2

    Article  Google Scholar 

  42. Rattez, H., Stefanou, I., Sulem, J., Veveakis, M., Poulet, T.: Numerical analysis of strain localization in rocks with thermo-hydro-mechanical couplings using Cosserat continuum. Rock Mech. Rock Eng. 51(10), 3295–3311 (2018). https://doi.org/10.1007/s00603-018-1529-7

    Article  ADS  Google Scholar 

  43. Royer, R., Darnis, P., Laheurte, R., Gérard, A., Cahuc, O.: Finite strain gradient plasticity theory for high speed machining. Procedia Eng. 10, 2312–2317 (2011). https://doi.org/10.1016/j.proeng.2011.04.381

    Article  Google Scholar 

  44. Sabet, S.A., de Borst, R.: Structural softening, mesh dependence, and regularisation in non-associated plastic flow. Int. J. Numer. Anal. Meth. Geomech. 43(13), 2170–2183 (2019). https://doi.org/10.1002/nag.2973

    Article  Google Scholar 

  45. Śloderbach, Z., Paja̧k, J.: Thermodynamic potential of free energy for thermo-elastic–plastic body. Contin. Mech. Thermodyn. 30(1), 221–232 (2018). https://doi.org/10.1007/s00161-017-0597-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Steinmann, P., William, K.: Localization within the framework of micropolar elasto-plasticity. In: Brüller, O.S., Mannl, V., Najar, J. (eds.) Advances in Continuum Mechanics, pp. 296–313. Springer, Berlin (1991). https://doi.org/10.1007/978-3-642-48890-0_24

  47. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998). https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  ADS  Google Scholar 

  48. Taylor, G.I., Quinney, H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 143(849), 307–326 (1934). https://doi.org/10.1098/rspa.1934.0004

    Article  ADS  Google Scholar 

  49. Tordesillas, A., Peters, J.F., Gardiner, B.S.: Shear band evolution and accumulated microstructural development in Cosserat media. Int. J. Numer. Anal. Meth. Geomech. 28(10), 981–1010 (2004). https://doi.org/10.1002/nag.343

    Article  MATH  Google Scholar 

  50. Wang, W.M., Sluys, L.J., De Borst, R.: Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int. J. Numer. Methods Eng. 40(20), 3839–3864 (1997). https://doi.org/10.1002/(SICI)1097-0207(19971030)40:20<3839::AID-NME245>3.0.CO;2-6

    Article  MATH  Google Scholar 

  51. Wang, X.B.: Adiabatic shear localization for steels based on Johnson–Cook model and second- and fourth-order gradient plasticity models. J. Iron Steel Res. Int. 14(5), 56–61 (2007). https://doi.org/10.1016/S1006-706X(07)60075-2

    Article  Google Scholar 

  52. Wcisło, B., Pamin, J.: Local and non-local thermomechanical modeling of elastic–plastic materials undergoing large strains. Int. J. Numer. Methods Eng. 109(1), 102–124 (2017). https://doi.org/10.1002/nme.5280

    Article  MathSciNet  Google Scholar 

  53. Wu, J., Liu, Z.: Modeling of flow stress in orthogonal micro-cutting process based on strain gradient plasticity theory. Int. J. Adv. Manuf. Technol. 46(1–4), 143–149 (2010). https://doi.org/10.1007/s00170-009-2049-0

    Article  Google Scholar 

  54. Ye, G.G., Chen, Y., Xue, S.F., Dai, L.H.: Critical cutting speed for onset of serrated chip flow in high speed machining. Int. J. Mach. Tools Manuf 86, 18–33 (2014). https://doi.org/10.1016/j.ijmachtools.2014.06.006

    Article  Google Scholar 

  55. Yuan, H., Chen, J.: Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests. Int. J. Solids Struct. 38(46–47), 8171–8187 (2001). https://doi.org/10.1016/S0020-7683(01)00121-4

    Article  MATH  Google Scholar 

  56. Zheng, Q.S.: Theory of representations for tensor functions—a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47(11), 545 (1994). https://doi.org/10.1115/1.3111066

    Article  ADS  Google Scholar 

  57. Z-set. non-linear material and structure analysis suite. http://zset-software.com. Accessed 2020-03-02

Download references

Acknowledgements

This project has received funding from the European Union’s Marie Skłodowska-Curie Action (MSCA) Innovative Training Network (ITN) H2020-MSCA-ITN-2017 under the grant agreement No 764979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Russo.

Additional information

Communicated by Emilio Barchiesi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Derivation of \(\dot{T}\)

Derivation of \(\dot{T}\)

The derivation of the temperature rate can be derived starting from the definition of the entropy from Eq. (27) and assuming the Helmholtz free energy function as in Eq. (21):

(60)

then, by then taking the time variation of the entropy:

(61)

where:

(62)
(63)
(64)

and:

(65)

and by plugging them it into the heat Equation Eq. (33), we obtain:

(66)

from which the temperature rate can be evaluated as:

(67)
Table 3 Order of magnitudes of the terms in Eq. (67)

The one reported in Eq. (67) is an expression of the temperature rate which contains many terms whose magnitude is well below the magnitude of the larger terms as for example, therefore assumptions were made on some of the quantities populating Eq. (67) in order to make it usable, and here follows the list of hypotheses:

  • \(\dfrac{\partial C_{\varepsilon }}{\partial T}\) = 0;

  • T = 500 K ;

Furthermore, by assuming the material elastic and plastic models to be the ones described in Tables 1 and 2 , the terms in Eq. (67) have the orders of magnitudes listed in Table 3.

From the comparison of the order of magnitudes of the terms in Eq. (67) that are presented in Table 3, the temperature flow rule can assume the following form:

(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, R., Forest, S. & Girot Mata, F.A. Thermomechanics of Cosserat medium: modeling adiabatic shear bands in metals. Continuum Mech. Thermodyn. 35, 919–938 (2023). https://doi.org/10.1007/s00161-020-00930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00930-z

Keywords

Navigation