Skip to main content
Log in

Comparison among simultaneous confidence regions for nonlinear diffusion models

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Accuracy measures for parameter estimates represent a tricky issue in nonlinear models. Practitioners often use separate marginal confidence intervals for each parameter in place of a simultaneous confidence region (sCR). However, this can be extremely misleading due to the curvature of the parameter space of the nonlinear model. For low parameter dimensions, routines for evaluating approximate sCRs are available in the most common software programs; however, the degree of accuracy depends on the curvature of the parameter space and the sample size. Exact sCRs are computationally intensive, and for this reason, in the past, they did not receive much attention. In this paper, we perform a comparison among exact, asymptotic exact, approximate sCRs, and marginal confidence intervals. More modern regions based on bootstrap are also examined as an alternative approach (both parametric and nonparametric). Their degree of accuracy is compared with both real data and simulation results. Among the nonlinear models, in this paper, the focus is on two of the most widespread diffusion models of products and technologies, that is, the Bass and Generalized Bass models. Three different empirical studies are analyzed here. Simulation studies are also performed for lifecycles with the same diffusion characteristics as those of the empirical studies. Our results show that, as the parameter dimension increases, overlapping among the alternative sCRs reduces. The approximate sCR shows inadequate values of overlapping with the exact sCR, even for moderate parameter dimension. Bootstrap regions also exhibit good performance in describing the shape of the exact region when curvature is present, but they fail to spread up to its boundary. The coverage probability of each region is assessed with simulations. We observe that the coverage probability of the approximate sCR decreases rapidly, even for moderate parameter dimension, and it is smaller than the nominal level for bootstrap regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. For evaluating the lifecycle stage, we use the largest available dataset and estimate the most appropriate model. We then make predictions to find for which \(t^*\) the predicted values overtake \(0.99\hat{m}.\) The value \(t^*\) is then used as the proxy length of the lifecycle, and the lifecycle stage of a dataset is assessed by \(100 n/t^*.\)

References

  • Adler D, Murdoch D (2018) rgl: 3D visualization using OpenGL. https://CRAN.R-project.org/package=rgl, r package version 0.99.16. Accessed 16 Oct 2019

  • Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5):215–227

    Article  Google Scholar 

  • Bass FM, Krishnan TV, Jain DC (1994) Why the Bass model fits without decision variables. Mark Sci 13(3):203–223

    Article  Google Scholar 

  • Bates D, Watts G (1988) Nonlinear regression analysis and its applications. Wiley, New York

    Book  Google Scholar 

  • Bates DM, Watts DG (1980) Relative curvature measures of nonlinearity. J R Stat Soc Ser B (Methodol) 42:1–25

    MathSciNet  MATH  Google Scholar 

  • Beale E (1960) Confidence regions in non-linear estimation. J R Stat Soc Ser B (Methodol) 22:41–88

    MathSciNet  MATH  Google Scholar 

  • Boswijk HP, Franses PH (2005) On the econometrics of the Bass diffusion model. J Bus Econ Stat 23(3):255–268

    Article  MathSciNet  Google Scholar 

  • Demidenko E (2017) Exact and approximate statistical inference for nonlinear regression and the estimating equation approach. Scand J Stat 44(3):636–665

    Article  MathSciNet  Google Scholar 

  • Furlan C, Mortarino C (2018) Comparison of exact and approximate simultaneous confidence regions in nonlinear regression models. In: Proceedings of the 49th scientific meeting of the Italian Statistical Society, Palermo. 20–22 June 2018

  • Genest M, Masse JC, Plante JF (2017) Depth: nonparametric depth functions for multivariate analysis. https://CRAN.R-project.org/package=depth, r package version 2.1-1. Accessed 16 Oct 2019

  • Guseo R (1983) Confidence regions in non linear regression. In: Proceedings of the 44th session of International Statistical Institute, Madrid, pp 333–336. 12–22 Sept 1983

  • Guseo R, Dalla Valle A (2005) Oil and gas depletion: diffusion models and forecasting under strategic intervention. Stat Methods Appl 14(3):375–387

    Article  MathSciNet  Google Scholar 

  • Hamilton DC, Watts DG, Bates DM (1982) Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions. Ann Stat 10(2):386–393

    Article  MathSciNet  Google Scholar 

  • Hartley HO (1964) Exact confidence regions for the parameters in non-linear regression laws. Biometrika 51(3/4):347–353

    Article  MathSciNet  Google Scholar 

  • Lee A, Nyangoma S, Seber G (2002) Confidence regions for multinomial parameters. Comput Stat Data Anal 39(3):329–342

    Article  MathSciNet  Google Scholar 

  • Lee K, Lee JM, Park TS, Lee SH (2010) Construction of classical confidence regions of model parameters in nonlinear regression analyses. Appl Radiat Isot 68(7):1261–1265

    Article  Google Scholar 

  • Murdoch D, Chow ED (2018) Ellipse: functions for drawing ellipses and ellipse-like confidence regions. https://CRAN.R-project.org/package=ellipse, r package version 0.4.1. Accessed 16 Oct 2019

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.R-project.org/. Accessed 16 Oct 2019

  • Rousseeuw PJ, Struyf A (1998) Computing location depth and regression depth in higher dimensions. Stat Comput 8(3):193–203

    Article  Google Scholar 

  • Seber G, Wild C (1989) Nonlinear regression. Wiley, New York

    Book  Google Scholar 

  • Tukey JW (1975) Mathematics and picturing data. In: Proceedings of the 1975 international congress of mathematics vol 2, pp 523–531

  • Withers CS, Nadarajah S (2012) Improved confidence regions based on Edgeworth expansions. Comput Stat Data Anal 56(12):4366–4380

    Article  MathSciNet  Google Scholar 

  • Zuo Y, Serfling R (2000) General notions of statistical depth function. Ann Stat 28(2):461–482

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewer and the Associate Editor, whose comments and suggestions significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Furlan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 BM and GBM: model and derivatives

In Sect. 2, the diffusion models examined in this paper are summarized. As above explained, GBM\(_{exp}\) and GBM\(_{rect}\) denote model (3) when w(t) equals expression (4) and (5), respectively. The final expression of the GBM\(_{exp}\) is

$$\begin{aligned} z(t) = \left\{ \begin{array}{ll} \displaystyle m \, \frac{1- e^{-(p+q)t}}{1+ \frac{q}{p} e^{-(p+q)t}} &{}\quad 0\le t < a_1 \\ \displaystyle m \, \frac{1- e^{-(p+q)\left\{ t + \frac{c_1}{b_1}\left[ e^{b_1 \left( t-a_1\right) }-1\right] \right\} }}{1+ \frac{q}{p} e^{-(p+q)\left\{ t + \frac{c_1}{b_1}\left[ e^{b_1 \left( t-a_1\right) -1}\right] \right\} }} &{}\quad t \ge a_1, \\ \end{array} \right. \end{aligned}$$
(A.1)

and the complete formulation for the GBM\(_{rect}\) is

$$\begin{aligned} z(t) = \left\{ \begin{array}{ll} \displaystyle m \, \frac{1- e^{-(p+q)t}}{1+ \frac{q}{p} e^{-(p+q)t}} &{}\quad 0\le t < a_1 \\ \displaystyle m \, \frac{1- e^{-(p+q)\left[ t + c_1 (t-a_1)\right] }}{1+ \frac{q}{p} e^{-(p+q)\left[ t + c_1 (t-a_1)\right] }} &{}\quad a_1 \le t \le b_1 \\ \displaystyle m \, \frac{1- e^{-(p+q)\left[ t + c_1 (b_1-a_1)\right] }}{1+ \frac{q}{p} e^{-(p+q)\left[ t + c_1 (b_1-a_1)\right] }} &{}\quad t > b_1. \\ \end{array} \right. \end{aligned}$$
(A.2)

For simplicity, the expression of both the GBM\(_{exp}\) and GBM\(_{rect}\) in Eqs. (A.1) and (A.2) can be denoted as

$$\begin{aligned} z(t) = m \, \frac{1- e^{-(p+q)A}}{1+ \frac{q}{p} e^{-(p+q)A}}, \end{aligned}$$
(A.3)

where for the GBM\(_{exp}\)

$$\begin{aligned} A = \left\{ \begin{array}{ll} \displaystyle t &{}\quad 0\le t < a_1 \\ \displaystyle t + \frac{c_1}{b_1}\left[ e^{b_1 (t-a_1)}-1\right] &{}\quad t \ge a_1, \\ \end{array} \right. \end{aligned}$$
(A.4)

and for the GBM\(_{rect}\)

$$\begin{aligned} A = \left\{ \begin{array}{ll} \displaystyle t &{}\quad 0\le t < a_1 \\ \displaystyle t + c_1 (t-a_1) &{}\quad a_1 \le t \le b_1 \\ \displaystyle t + c_1 (b_1-a_1) &{}\quad t > b_1. \\ \end{array} \right. \end{aligned}$$
(A.5)

In order to evaluate some of the sCRs compared in this study, partial derivatives of the model with respect to the parameters are required. The partial derivatives of z(t) of Eq. (A.3), with respect to the diffusion parameters (mpq),  are equal for the GBM\(_{rect}\) and GBM\(_{rect}\), since Eqs. (A.4) and (A.5) do not depend upon (mpq). The common partial derivatives are

$$\begin{aligned} \displaystyle \frac{\partial z(t)}{\partial m} = \frac{1- e^{-(p+q)A}}{1+ \frac{q}{p} e^{-(p+q)A}}, \end{aligned}$$
(A.6)
$$\begin{aligned} \displaystyle&\frac{\partial z(t)}{\partial p} \nonumber \\&\quad = m \frac{\left[ A e^{-(p+q)A}\right] \left[ 1\!+\! \frac{q}{p} e^{-(p+q)A} \right] -\left[ 1\!-\! e^{-(p+q)A} \right] \left[ -\frac{q}{p^2} e^{-(p+q)A}- \frac{q}{p} A e^{-(p+q)A}\right] }{\left[ 1+ \frac{q}{p} e^{-(p+q)A} \right] ^2} \nonumber \\&\quad = m \frac{\left[ A e^{-(p+q)A}\right] \left[ 1\!+\! \frac{q}{p} e^{-(p+q)A} \right] +\left[ 1\!-\! e^{-(p+q)A} \right] \left[ \frac{q}{p^2} e^{-(p+q)A}+ \frac{q}{p} A e^{-(p+q)A}\right] }{\left[ 1+ \frac{q}{p} e^{-(p+q)A} \right] ^2}, \nonumber \\ \end{aligned}$$
(A.7)

and

$$\begin{aligned} \displaystyle&\frac{\partial z(t)}{\partial q}\nonumber \\&\quad = m \frac{\left[ A e^{-(p+q)A}\right] \left[ 1\!+\! \frac{q}{p} e^{-(p+q)A} \right] -\left[ 1\!-\! e^{-(p+q)A} \right] \left[ \frac{1}{p} e^{-(p+q)A}- \frac{q}{p} A e^{-(p+q)A}\right] }{\left[ 1+ \frac{q}{p} e^{-(p+q)A} \right] ^2} \nonumber \\&\quad = m \frac{\left[ A e^{-(p+q)A}\right] \left[ 1\!+\! \frac{q}{p} e^{-(p+q)A} \right] +\left[ 1\!-\! e^{-(p+q)A} \right] \left[ -\frac{1}{p} e^{-(p+q)A}+ \frac{q}{p} A e^{-(p+q)A}\right] }{\left[ 1+ \frac{q}{p} e^{-(p+q)A} \right] ^2}. \nonumber \\ \end{aligned}$$
(A.8)

Let us now consider the partial derivative of z(t) with respect to \(a_1, b_1,\) and \(c_1\), for the GBM\(_{exp}\) (Eqs. (A.3) and (A.4)). For \(0\le t < a_1,\) the partial derivatives are zero, while for \(t>a_1\), we obtain

$$\begin{aligned} \displaystyle&\frac{\partial z(t)}{\partial a_1} = m \frac{1}{\partial a_1} \partial \frac{1- e^{-(p+q)A}}{1+ \frac{q}{p} e^{-(p+q)A}} \nonumber \\&\quad = m \frac{\left[ (p+q) e^{-(p+q)A} \frac{\partial A}{\partial a_1} \right] \left[ 1\!+\! \frac{q}{p} e^{-(p+q)A} \right] +\left[ 1\!-\! e^{-(p+q)A} \right] \left[ \frac{q}{p} (p+q) e^{-(p+q)A} \frac{\partial A}{\partial a_1} \right] }{\left[ 1+ \frac{q}{p} e^{-(p+q)A}\right] ^2}, \nonumber \\ \end{aligned}$$
(A.9)

where

$$\begin{aligned} \frac{\partial A}{\partial a_1}= & {} \displaystyle \frac{\partial \left\{ t + \frac{c_1}{b_1}\left[ e^{b_1 (t-a_1)}-1\right] \right\} }{\partial a_1} = \displaystyle \frac{\partial \left[ \frac{c_1}{b_1} e^{b_1 (t-a_1)} \right] }{\partial a_1} \nonumber \\= & {} \displaystyle \frac{c_1}{b_1} e^{b_1 (t-a_1)} (-b_1) = \displaystyle - {c_1} e^{b_1 (t-a_1)}; \end{aligned}$$
(A.10)
$$\begin{aligned}&\displaystyle \frac{\partial z(t)}{\partial b_1} = m \frac{1}{\partial b_1} \partial \frac{1- e^{-(p+q)A}}{1+ \frac{q}{p} e^{-(p+q)A}} \nonumber \\&\quad = m \frac{\left[ (p+q) e^{-(p+q)A} \frac{\partial A}{\partial b_1} \right] \left[ 1\!+\! \frac{q}{p} e^{-(p+q)A} \right] +\left[ 1\!-\! e^{-(p+q)A} \right] \left[ \frac{q}{p} (p+q) e^{-(p+q)A} \frac{\partial A}{\partial b_1} \right] }{\left[ 1+ \frac{q}{p} e^{-(p+q)A}\right] ^2}, \nonumber \\ \end{aligned}$$
(A.11)

where

$$\begin{aligned} \frac{\partial A}{\partial b_1}= & {} \displaystyle \frac{\partial \left\{ t + \frac{c_1}{b_1}\left[ e^{b_1 (t-a_1)}-1\right] \right\} }{\partial b_1} = \displaystyle \frac{\partial \left[ \frac{c_1}{b_1} e^{b_1 (t-a_1)} - \frac{c_1}{b_1}\right] }{\partial b_1} \nonumber \\= & {} \displaystyle - \frac{c_1}{b_1^2} e^{b_1 (t-a_1)} + \frac{c_1}{b_1} (t-a_1) e^{b_1 (t-a_1)} + \frac{c_1}{b_1^2}; \end{aligned}$$
(A.12)

and

$$\begin{aligned}&\displaystyle \frac{\partial z(t)}{\partial c_1} = m \frac{1}{\partial c_1} \partial \frac{1- e^{-(p+q)A}}{1+ \frac{q}{p} e^{-(p+q)A}}\nonumber \\&\quad = m \frac{\left[ (p+q) e^{-(p+q)A} \frac{\partial A}{\partial c_1} \right] \left[ 1\!+\! \frac{q}{p} e^{-(p+q)A} \right] +\left[ 1\!-\! e^{-(p+q)A} \right] \left[ \frac{q}{p} (p+q) e^{-(p+q)A} \frac{\partial A}{\partial c_1} \right] }{\left( 1+ \frac{q}{p} e^{-(p+q)A}\right) ^2}, \nonumber \\ \end{aligned}$$
(A.13)

where

$$\begin{aligned} \frac{\partial A}{\partial c_1}= & {} \displaystyle \frac{\partial \left\{ t + \frac{c_1}{b_1}\left[ e^{b_1 (t-a_1)}-1\right] \right\} }{\partial c_1} = \displaystyle \frac{\partial \left[ \frac{c_1}{b_1} e^{b_1 (t-a_1)} - \frac{c_1}{b_1}\right] }{\partial c_1} \nonumber \\= & {} \displaystyle \frac{1}{b_1} \left( e^{b_1 (t-a_1)}-1 \right) . \end{aligned}$$
(A.14)

In the case of the GBM\(_{rect}\), the partial derivatives of z(t) (Eqs. (A.3) and (A.5)), with respect to \((a_1, b_1, c_1)\), are zero for \(0\le t < a_1.\) For \(t>a_1\), they correspond to those found in Eqs. (A.9), (A.11), and (A.13) for the GBM\(_{exp}\), where now,

$$\begin{aligned} \frac{\partial A}{\partial a_1} = \left\{ \begin{array}{ll} \displaystyle \frac{1}{{\partial a_1}} \partial \left[ t+c_1 (t-a_1) \right] = -c_1 &{}\quad a_1 \le t \le b_1 \\ \displaystyle \frac{1}{{\partial a_1}} \partial \left[ t+c_1 (b_1-a_1) \right] = -c_1 &{}\quad t > b_1, \\ \end{array} \right. \end{aligned}$$
(A.15)
$$\begin{aligned} \frac{\partial A}{\partial b_1} = \left\{ \begin{array}{ll} \displaystyle \frac{1}{{\partial b_1}} \partial \left[ t+c_1 (t-a_1) \right] = 0 &{}\quad a_1 \le t \le b_1 \\ \displaystyle \frac{1}{{\partial b_1}} \partial \left[ t+c_1 (b_1-a_1) \right] = c_1 &{}\quad t > b_1, \\ \end{array} \right. \end{aligned}$$
(A.16)
$$\begin{aligned} \frac{\partial A}{\partial c_1} = \left\{ \begin{array}{ll} \displaystyle \frac{1}{{\partial c_1}} \partial \left[ t+c_1 (t-a_1) \right] = t-a_1 &{}\quad a_1 \le t \le b_1 \\ \displaystyle \frac{1}{{\partial c_1}} \partial \left[ t+c_1 (b_1-a_1) \right] = b_1 -a_1 &{}\quad t > b_1. \\ \end{array} \right. \end{aligned}$$
(A.17)

For the BM, the partial derivatives of z(t) of Eq. (6), with respect to the diffusion parameters (mpq), correspond to those of Eqs. (A.6), (A.7), and (A.8), where \(A=t\), for \(t\ge 0.\)

Table 5 Music cassettes. Estimates, asymptotic standard errors, \(95\%\) mCIs, and \(R^2\) for the BM (\(k=3\))
Table 6 Austrian solar thermal capacity. Estimates, asymptotic standard errors, and \(95\%\) mCIs for the BM with fixed m (\(k=2\)), BM (\(k=3\)), and GBM\(_{rect}\) (\(k=6\)). \(R^2\) is provided for each model
Table 7 Algerian natural gas production (truncated time series). The estimates, asymptotic standard errors, and \(95\%\) mCIs for the BM with fixed m (\(k=2\)), BM (\(k=3\)), and GBM\(_{exp}\) (\(k=6\)). \(R^2\) is provided for each model
Table 8 Algerian natural gas production (complete time series). The estimates, asymptotic standard errors, and \(95\%\) mCIs for the BM with fixed m (\(k=2\)), BM (\(k=3\)), and GBM\(_{exp}\) (\(k=6\)). \(R^2\) is provided for each model
Table 9 Coverage probability of \({\mathfrak {C}(\Theta )}\), \({\mathfrak {L}(\Theta )}\), \({\mathfrak {I}(\Theta )}\), \({\mathfrak {B}_p(\Theta )}\), \({\mathfrak {B}_{np}(\Theta )}\), and mCIs of the restricted BM (\(k=2\)), for a set of different \((\sigma /m)^2\times 10^6\) values. \(N=1000,~B=1000\). The true values consist of the estimates in Tables 7 (\(k=2\)), 6 (\(k=2\)), 8 (\(k=2\)), for the settings Gas.2, Sol.2, and TGas.2, respectively. The nominal level is \(1-\alpha =0.95\)

1.2 Fitted models

In this “Appendix”, we list estimation details for all the datasets described in Sect. 4 and the different models fitted. The parameter estimates, asymptotic standard errors, \(95\%\) mCIs, and determination index \(R^2\) are shown in Table 5 for the cassette sales, Table 6 (\(k=2, 3, 6\)) for solar thermal capacity, and Tables 7 and 8 (\(k=2, 3, 6\)) for the complete and truncated natural gas production time series, respectively.

1.3 Coverage probability tables

The tables in this section display in detail the numerical values for coverage probabilities for all the simulation settings examined in Sect. 6. Coverage probabilities were represented graphically in Figs. 89, 10, 11, 12, 13, 14 and 16, 17, 18 and 19.

Table 10 Coverage probability of \({\mathfrak {C}(\Theta )}\), \({\mathfrak {L}(\Theta )}\), \({\mathfrak {I}(\Theta )}\), \({\mathfrak {B}_p(\Theta )}\), \({\mathfrak {B}_{np}(\Theta )}\), and mCIs of the BM (\(k=3\)), for a set of different \((\sigma /m)^2\times 10^6\) values. \(N=1000,~B=1000\). The true values consist of the estimates in Tables 57 (\(k=3\)), 6 (\(k=3\)), 8 (\(k=3\)), for the settings Cass.3, Gas.3, Sol.3, and TGas.3, respectively. The nominal level is \(1-\alpha =0.95\)
Table 11 Coverage probability of \({\mathfrak {C}(\Theta )}\), \({\mathfrak {L}(\Theta )}\), \({\mathfrak {I}(\Theta )}\), \({\mathfrak {B}_p(\Theta )}\), \({\mathfrak {B}_{np}(\Theta )}\), and mCIs of the GBM (\(k=6\)), for a set of different \((\sigma /m)^2\times 10^6\) values. \(N=1000,~B=1000\). The true values consist of the estimates in Tables 6 (\(k=6\)), 7 (\(k=6\)), and 8 (\(k=6\)), for the settings Sol.6, Gas.6, and TGas.6, respectively. The nominal level is \(1-\alpha =0.95\)
Table 12 Cassette sales in the case of heteroscedasticity. \(N=1000,~B=1000,~n=33\). Coverage probability of \({\mathfrak {C}(\Theta )}\), \({\mathfrak {L}(\Theta )}\), \({\mathfrak {I}(\Theta )}\), \({\mathfrak {B}_p(\Theta )}\), \({\mathfrak {B}_{np}(\Theta )}\), and mCIs, for a set of different \((\sigma _u/m)^2\times 10^{11}\) values, for the BM (\(k=3\)). The true values consist of the estimates in Table 5. The nominal level is \(1-\alpha =0.95\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlan, C., Mortarino, C. Comparison among simultaneous confidence regions for nonlinear diffusion models. Comput Stat 35, 1951–1991 (2020). https://doi.org/10.1007/s00180-019-00949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00949-0

Keywords

Navigation