Skip to main content
Log in

Thienylmethylene Oxindole Based Conjugated Polymers via Direct Arylation Polymerization and Their Electrochromic Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Direct arylation methods have been used to polymerize thienylmethylene oxindoles (TEIs) and 3,3-bis[[(2-ethylhexyl)oxy]methyl]-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepin (ProDOT) for new donor-acceptor conjugated polymers. The polymers exhibited blue hues in neutral-state with distinct color-to-transmissive reversible electrochromic switching under applied potentials from 0 V to +1.5 V, and showed high coloration efficiencies (436–438 cm2·C−1) in near-infrared regions with high switching speeds around 1–2 s under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 2007, 107, 1296–1323.

    Article  CAS  Google Scholar 

  2. Li, P.; Xu, L.; Shen, H.; Duan, X.; Zhang, J.; Wei, Z.; Yi, Z.; Di, C. A.; Wang, S. D-A1-D-A2 copolymer based on pyridine-capped diketopyrrolopyrrole with fluorinated benzothiadiazole for high-performance ambipolar organic thin-film transistors. ACS Appl. Mater. Interfaces 2016, 8, 8620–8626.

    Article  CAS  Google Scholar 

  3. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267.

    CAS  PubMed  Google Scholar 

  4. Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 2019, 119, 8028–8086.

    Article  CAS  Google Scholar 

  5. Zhang, J.; Kan, B.; Pearson, A. J.; Parnell, A. J.; Cooper, J. F. K.; Liu, X. K.; Conaghan, P. J.; Hopper, T. R.; Wu, Y.; Wan, X.; Gao, F.; Greenham, N. C.; Bakulin, A. A.; Chen, Y.; Friend, R. H. Efficient non-fullerene organic solar cells employing sequentially deposited donor-acceptor layers. J. Mater. Chem. A 2018, 6, 18225–18233.

    Article  CAS  Google Scholar 

  6. Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

    Article  Google Scholar 

  7. Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320.

    Article  CAS  Google Scholar 

  8. Thomas, C. A.; Zong, K.; Abboud, K. A.; Steel, P. J.; Reynolds, J. R. Donor-mediated band gap reduction in a homologous series of conjugated polymers. J. Am. Chem. Soc. 2004, 126, 16440–16450.

    Article  CAS  Google Scholar 

  9. Amb, C. M.; Dyer, A. L.; Reynolds, J. R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397–415.

    Article  CAS  Google Scholar 

  10. Collier, G. S.; Reynolds, J. R. Exploring the utility of buchwald ligands for C-H oxidative direct arylation polymerizations. ACS Macro Lett. 2019, 8, 931–936.

    Article  CAS  Google Scholar 

  11. Teran, N. B.; Reynolds, J. R. Discrete donor-acceptor conjugated systems in neutral and oxidized states: implications toward molecular design for high contrast electrochromics. Chem. Mater. 2017, 29, 1290–1301.

    Article  CAS  Google Scholar 

  12. Hacioglu, S. O. Copolymerization of azobenzene-bearing monomer and 3,4-ethylenedioxythiophene (EDOT): improved electrochemical performance for electrochromic device applications. Chinese J. Polym. Sci. 2020, 38, 109–117.

    Article  CAS  Google Scholar 

  13. Xu, Z.; Kong, L. Q.; Zhao, J. S.; Fan, W. Y. Deyyloxyphenyl-substituted quinoxaline-embedded conjugated electrochromic polymers with high switching stability and fast response speed. Chinese J. Polym. Sci. 2016, 34, 407–419.

    Article  CAS  Google Scholar 

  14. You, L.; He, J.; Mei, J. Tunable green electrochromic polymers via direct arylation polymerization. Polym. Chem. 2018, 9, 5262–5267.

    Article  CAS  Google Scholar 

  15. Cai, W. A.; Cai, J. W.; Niu, H. J.; Xiao, T. D.; Bai, X. D.; Wang, C.; Zhang, Y. H.; Wang, W. Synthesis and electrochromic properties of polyimides with pendent benzimidazole and triphenylamine units. Chinese J. Polym. Sci. 2016, 34, 1091–1102.

    Article  CAS  Google Scholar 

  16. Park, G. E.; Shin, J.; Lee, D. H.; Lee, T. W.; Shim, H.; Cho, M. J.; Pyo, S.; Choi, D. H. Acene-containing donor-acceptor conjugated polymers: correlation between the structure of donor moiety, charge carrier mobility, and charge transport dynamics in electronic devices. Macromolecules 2014, 47, 3747–3754.

    Article  CAS  Google Scholar 

  17. Kini, G. P.; Oh, S.; Abbas, Z.; Rasool, S.; Jahandar, M.; Song, C. E.; Lee, S. K.; Shin, W. S.; So, W. W.; Lee, J. C. Effects on photovoltaic performance of dialkyloxy-benzothiadiazole copolymers by varying the thienoacene donor. ACS Appl. Mater. Interfaces 2017, 9, 12617–12628.

    Article  CAS  Google Scholar 

  18. Facchetti, A.; Vaccaro, L.; Marrocchi, A. Semiconducting polymers prepared by direct arylation polycondensation. Angew. Chem. Int. Ed. 2012, 51, 3520–3523.

    Article  CAS  Google Scholar 

  19. Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225–14274.

    Article  CAS  Google Scholar 

  20. Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H coupling reactions between two (hetero)arenes. Chem. Rev. 2017, 117, 8787–8863.

    Article  CAS  Google Scholar 

  21. Blaskovits, J. T.; Leclerc, M. C-H activation as a shortcut to conjugated polymer synthesis. Macromol. Rapid Commun. 2019, 40, 1800512.

    Article  Google Scholar 

  22. Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: fundamentals and applications. Wiley, 2008, p. 3.

  23. Michaelis, A.; Berneth, H.; Haarer, D.; Kostromine, S.; Neigl, R.; Schmidt, R. Electrochromic dye system for smart window applications. Adv. Mater. 2001, 13, 1825–1828.

    Article  CAS  Google Scholar 

  24. Stalder, R.; Mei, J.; Graham, K. R.; Estrada, L. A.; Reynolds, J. R. Isoindigo, a versatile electron-deficient unit For highperformance organic electronics. Chem. Mater. 2014, 26, 664–678.

    Article  CAS  Google Scholar 

  25. Liu, J.; Li, L.; Xu, R.; Zhang, K.; Ouyang, M.; Li, W.; Lv, X.; Zhang, C. Design, synthesis, and properties of donor-acceptor-donor’ asymmetric structured electrochromic polymers based on fluorenone as acceptor units. ACS Appl. Polym. Mater. 2019, 1, 1081–1087.

    Article  CAS  Google Scholar 

  26. Wang, E.; Mammo, W.; Andersson, M. R. 25th Anniversary article: Isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 2014, 26, 1801–1826.

    Article  CAS  Google Scholar 

  27. Lei, T.; Cao, Y.; Fan, Y.; Liu, C. J.; Yuan, S. C.; Pei, J. Highperformance air-stable organic field-effect transistors: isoindigo-based conjugated polymers. J. Am. Chem. Soc. 2011, 133, 6099–6101.

    Article  CAS  Google Scholar 

  28. Randell, N. M.; Radford, C. L.; Yang, J.; Quinn, J.; Hou, D.; Li, Y.; Kelly, T. L. Effect of acceptor unit length and planarity on the optoelectronic properties of isoindigo-thiophene donor-acceptor polymers. Chem. Mater. 2018, 30, 4864–4873.

    Article  CAS  Google Scholar 

  29. Lu, C.; Chen, H. C.; Chuang, W. T.; Hsu, Y. H.; Chen, W. C.; Chou, P. T. Interplay of molecular orientation, film formation, and optoelectronic properties on isoindigo- and thienoisoindigo-based copolymers for organic field effect transistor and organic photovoltaic applications. Chem. Mater. 2015, 27, 6837–6847.

    Article  CAS  Google Scholar 

  30. Wu, J.; Chen, J.; Huang, H.; Li, S.; Wu, H.; Hu, C.; Tang, J.; Zhang, Q. (ZMThienylmethylene)oxindole-based polymers for high-performance solar cells. Macromolecules 2016, 49, 2145–2152.

    Article  CAS  Google Scholar 

  31. Zhao, D.; Zheng, J.; Tang, J.; Zhang, Q. Cyano substituted (Z)-(thienylmethylene)-2-indolone as a new building block for near-IR absorbing polymers. Dyes Pigments 2018, 154, 107–112.

    Article  CAS  Google Scholar 

  32. Xie, H.; Wang, M.; Kong, L.; Zhang, Y.; Ju, X.; Zhao, J. The optimization of donor-to-acceptor feed ratios with the aim of obtaining black-to-transmissive switching polymers based on isoindigo as the electron-deficient moiety. RSC Adv. 2017, 7, 11840–11851.

    Article  CAS  Google Scholar 

  33. Gustafsson-Carlberg, J. C.; Inganäs, O.; Andersson, M. R.; Booth, C.; Azens, A.; Granqvist, C. G. Tuning the bandgap for polymeric smart windows and displays. Electrochim. Acta 1995, 40, 2233–2235.

    Article  CAS  Google Scholar 

  34. Reeves, B. D.; Grenier, C. R. G.; Argun, A. A.; Cirpan, A.; McCarley, T. D.; Reynolds, J. R. Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules 2004, 37, 7559–7569.

    Article  CAS  Google Scholar 

  35. Dyer, A. L.; Thompson, E. J.; Reynolds, J. R. Completing the color palette with spray-processable polymer electrochromics. ACS Appl. Mater. Interfaces 2011, 3, 1787–95.

    Article  CAS  Google Scholar 

  36. Neo, W. T.; Ye, Q.; Chua, S. J.; Xu, J. Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J. Mater. Chem. C 2016, 4, 7364–7376.

    Article  CAS  Google Scholar 

  37. Gu, H.; Ming, S.; Lin, K.; Chen, S.; Liu, X.; Lu, B.; Xu, J. Isoindigo as an electron-deficient unit for high-performance polymeric electrochromics. Electrochim. Acta 2018, 260, 772–782.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21674060 and 51603123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang-Li Cao, Jin-Sheng Zhao or Qing Zhang.

Electronic Supplementary Information

10118_2021_2503_MOESM1_ESM.pdf

Thienylmethylene Oxindole Based Conjugated Polymers via Direct Arylation Polymerization and Their Electrochromic Properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Yue, HG., Zhao, D. et al. Thienylmethylene Oxindole Based Conjugated Polymers via Direct Arylation Polymerization and Their Electrochromic Properties. Chin J Polym Sci 39, 147–153 (2021). https://doi.org/10.1007/s10118-021-2503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2503-5

Keywords

Navigation