Skip to main content

Advertisement

Log in

DFT and experimental study on adsorption of dyes on activated carbon prepared from apple leaves

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This work reports utilization of apple leaves as a source of activated carbon. Activated carbon from apple leaves is prepared by two different methods, thermal activation where AC1 is obtained and chemical activation using H3PO4 and ZnCl2 where AC2 and AC3 are obtained, respectively. XRD analysis revealed that all types of prepared ACs have a semi-crystalline nature with a mean crystallite size of 13, 21.02, and 39.47 nm for AC1, AC2, and AC3, respectively. To identify the most suitable desorption temperature, the exothermic behavior was discovered for the three types of ACs by DSC. The exothermic onset temperatures are 340 °C, 200 °C, 400 °C, or AC1, AC2, and AC3, respectively. The point of zero charge for the three types of ACs is 8.6, 7.3, and 2.5 for AC1, AC2, and AC3, respectively. The BET surface area analysis data demonstrated that mesoporous structure was developed in AC1 and AC2, while a microporous structure was developed in AC3. Quantum chemical calculations for ACs is carried out using Density Functional Theory (DFT). Application of the prepared ACs in adsorption of basic dye C.I. base blue 47 is studied. The maximum removal efficiency was 65.1%, 96% and 99% for AC1, AC2, and AC3, respectively under the influence of different operating aspects. Adsorption data are modeled by Langmuir, Freundlich, and Temkin isotherms. The data revealed that adsorption of basic dye C.I. base blue 47 on AC1 follows Langmuir isotherm and adsorption on AC2 and AC3 follows Freundlich isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\( {\text{A}}_{\text{T}} \) :

Temkin isotherm equilibrium binding constant, L g−1

\( \text{B}_{\text{T}} \) :

Constant related to heat of sorption, J mol−1

\( {\text{b}}_{\text{T}} \) :

Temkin isotherm constant

\( C_{o} \) :

Initial concentrations of the dye in solution, mg L−1

\( C_{e} \) :

Final concentrations of the dye in solution, mg L−1

D:

Crystal size

EgHOMO :

Energy of the highest occupied molecular orbital

EgLUMO :

Energy of the lowest unoccupied molecular orbital

k:

Constant (k = 0.9)

\( K_{F} \) :

Freundlich adsorption equilibrium constant, L g−1

KL :

Langmuir equilibrium constant, L mg−1

m :

Mass of the adsorbent, g

n :

Freundlich intensity factor

\( q_{e} \) :

Equilibrium adsorption capacity, mg g−1

\( q_{m} \) :

Theoretical maximum monolayer adsorption capacity, mg g−1

\( q_{t} \) :

Amount of dye adsorbed per unit mass of adsorbent, mg.g−1

R :

Universal gas constant (8.314 J mol−1.K−1)

S :

Global softness

T :

Temperature, K

V :

Solution volume in, L

β :

Full Width at Half Maximum of the peak (FWHM)

\( \eta \) :

Global chemical hardness of the concerned chemical system

θ :

Bragg angle

λ :

X-ray wavelength (1.54 Å)

\( \mu \) :

Chemical potential (i.e., negative of electrophilicity)

χ :

electronegativity

\( \omega \) :

Global electrophilicity

References

  1. Sulyman M, Namiesnik J, Gierak A (2014) Utilization of new activated carbon derived from oak leaves for removal of crystal violet from aqueous solution. Polish J Environ Stud 23:2223–2232

    Article  CAS  Google Scholar 

  2. Campanella A, Wool RP, Bah M, Fita S, Abuobaid A (2013) Composites from northern red oak (Quercus robur) leaves and plant oil-based resins. Journal of Applied Polymer Science 127:18–26

    Article  CAS  Google Scholar 

  3. Rahman IA, Saad B, Shaidan S, Sya Rizal ES (2005) Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process. Bioresour Technol 96:1578–1583.

  4. Dang VBH, Doan HD, Dang-Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresource Technology 100:211–219

    Article  CAS  Google Scholar 

  5. Fasakin O, Dangbegnon JK, Momodu DY, Madito MJ, Oyedotun KO, Eleruja MA, Manyala N (2018) Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochimica Acta 262:187–196

    Article  CAS  Google Scholar 

  6. Jacques AR, Lima EC, Dias SLP, Mazzocato AC, Pavan FA (2007) Yellow passion-fruit shell as biosorbent to remove Cr (III) and Pb (II) from aqueous solution. Sep Purif Technol 57:193–198.

  7. Mahamad MN, Abbas M, Zaini A, Zakaria ZA (2015) Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int Biodeter Biodegrad 102:274–280.

  8. Sivasankar V, Rajkumar S, Murugesh S, Darchen A (2012) Tamarind (Tamarindus indica) fruit shell carbon: a calcium-rich promising adsorbent for fluoride removal from groundwater. J Hazard Mater 225:164–172

    Article  CAS  Google Scholar 

  9. Girgis B, Yunis SS, Soliman AM (2002) Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Mater Lett 57:164–172

    Article  CAS  Google Scholar 

  10. Liu W, Liu Y, Tao Y, Yu Y, Jiang H, Lian H (2014) Comparative study of adsorption of Pb (II) on native garlic peel and mercerized garlic peel. Environ Sci Pollut Res 21:2054–2063

    Article  CAS  Google Scholar 

  11. Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL (2014) Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Ind Crops Products 62:437–445

    Article  CAS  Google Scholar 

  12. Azharul Islam M, Benhouria A, Asif M, Hameed BH (2015) Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. J Taiwan Inst Chem Eng 52:57–64.

  13. Demir H, Top A, Balköse D, Ülkü S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater 153:389–394

    Article  CAS  Google Scholar 

  14. Sharma A, Bhattacharyya KG (2005) Adsorption of chromium (VI) on Azadirachta indica (neem) leaf powder. Adsorption 10:327–338

    Article  Google Scholar 

  15. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  16. Abdel-Hamid SMS, Al-Qabandi OA, Elminshawy NAS, Bassyouni M, Zoromba MS, Abdel-Aziz MH, Mira H, Elhenawy Y (2019) Fabrication and characterization of microcellular polyurethane sisal biocomposites. Molecules 24:4585

    Article  CAS  Google Scholar 

  17. Baek J, Lee H, An K, Kim B (2019) Preparation and characterization of highly mesoporous activated short carbon fibers from kenaf precursors. Carbon Lett 29:393–399

    Article  Google Scholar 

  18. Lee H, Lee B, Kim J, An K, Park S, Kim B (2019) Determination of the optimum porosity for 2-CEES adsorption by activated carbon fiber from various precursors. Carbon Lett 29:649–654

    Article  Google Scholar 

  19. Mopoung S, Moonsri P, Palas W, Khumpai S (2015) Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution. Sci World J 2015

  20. Vasiliev LL, Kanonchik LE, Kulakov AG, Mishkinis DA, Safonova AM, Luneva NK (2006) Activated carbon fiber composites for ammonia, methane and hydrogen adsorption. Int J Low-Carbon Technol 1:95–111

    Article  Google Scholar 

  21. Pérez-Ramírez EE, de la Luz-Asunción M, Martínez-Hernández AL, de la Rosa-Álvarez G, Fernández-Tavizón S, Salas P, Velasco-Santos CJCL (2019) One-and two-dimensional carbon nanomaterials as adsorbents of cationic and anionic dyes from aqueous solutions. Carbon Lett 29:155–166

    Article  Google Scholar 

  22. Faizal ANM, Abdul Halim MH, Zaini MAA (2019) Kinetics and dynamic adsorption of methylene blue by CO2-activated resorcinol formaldehyde carbon gels. Carbon Lett 29:319–326.

  23. Worch E (2012) Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter, Berlin

    Book  Google Scholar 

  24. Elhady S, Bassyouni M, Mansour RA, Elzahar MH, Abdel-Hamid S, Elhenawy Y, Saleh MY (2020) Oily wastewater treatment using polyamide thin film composite membrane technology. Membranes 10:84

    Article  CAS  Google Scholar 

  25. Zoromba MSh, Ismail MIM, Bassyouni M, Abdel-Aziz MH, Salah N, Alshahrie A, Memic A (2017) Fabrication and characterization of poly (aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in wastewater treatment. Colloid Surf A Physicochem Eng Aspects 520:121–130

    Article  CAS  Google Scholar 

  26. Abdel-Aziz MH, Bassyouni M, Zoromba MSh, Alshehri AA (2019) Removal of dyes from waste solutions by anodic oxidation on an array of horizontal graphite rods anodes. Ind Eng Chem Res 58:1004–1018

    Article  CAS  Google Scholar 

  27. Gutub SA, Bassyouni M, Abdel-Hamid SMS (2013) Dissolved solids adsorption of freshwater using synthesized bio-foam composite. Life Sci J 10:464–471

    Google Scholar 

  28. Bonazzi P, Lepore GO, Bindi L, Chopin C, Husdal TA, Medenbach O (2014) Perbøeite-(Ce) and alnaperbøeite-(Ce), two new members of the epidote-törnebohmite polysomatic series: chemistry, structure, dehydrogenation, and clue for a sodian epidote end-member. Am Mineral 99:157–169

    Article  CAS  Google Scholar 

  29. Ibrahim A, Abdel-Aziz MH, Sh Zoromba M, Al-Hossainy AF (2018) Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synthetic Metals 238:1–13

    Article  CAS  Google Scholar 

  30. Engel P, Nowacki W (1970) Die Kristallstruktur von Rathit-II [As25S56| Pb6, VII5 5 Pb IX12 ]. Zeitschrift für Kristallographie-Crystalline Materials 131:356–375.

  31. Ahmad A, Hameed B (2010) Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J Hazard Mater 175:298–303

    Article  CAS  Google Scholar 

  32. Al-Hossainy A, Thabet HK, Zoromba MSh, Ibrahim A (2018) Facile synthesis and fabrication of a poly (ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. N J Chem 42:10386–10395

    Article  CAS  Google Scholar 

  33. Hanafy TA (2012) Dielectric relaxation and Schottky conduction of IR laser irradiated Makrofol-DE polycarbonate. J Appl Polym Sci 124:1–8

    Article  CAS  Google Scholar 

  34. Abdel-Aziz M, Al-Hossainy A, Ibrahim A, El-Maksoud SA, Zoromba MS, Bassyouni M, Abdel-Hamid S, Abd-Elmageed A, Elsayed I, Alqahtani O (2018) Synthesis, characterization and optical properties of multi-walled carbon nanotubes/aniline-o-anthranilic acid copolymer nanocomposite thin films. J Mater Sci Mater Electron 29:16702–16714

    CAS  Google Scholar 

  35. Zoromba MSh, Abdel-Aziz M, Bassyouni M, Bahaitham H, Al-Hossainy A (2018) Poly (o-phenylenediamine) thin film for organic solar cell applications. J Solid State Electrochem 22:3673–3687

    Article  CAS  Google Scholar 

  36. Zoromba MSh, Bassyouni M, Abdel-Aziz MH, Al-Hossainy AF, Salah N, Al-Ghamdi AA, Eid MR (2019) Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures. Appl Phys A 125:642

    Article  CAS  Google Scholar 

  37. Zoromba MSh, Al-Hossainy AF, Abdel-Aziz MH (2017) Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Synthetic Metals 231:34–43

    Article  CAS  Google Scholar 

  38. de Oliveira F, Eugênia M, Vaz BG, Borba CE, Alonso CG, Ostroski IC (2019) Modified activated carbon as a promising adsorbent for quinoline removal. Microporous Mesoporous Mater 277:208–216

    Article  CAS  Google Scholar 

  39. Muller JCM, Hakvoort G, Jansen JC (1998) DSC and TG study of water adosorption and desorption on zeolite NaA powder and attached as layer on metal. J Thermal Anal Calorimetry 53:449–466

    Article  CAS  Google Scholar 

  40. Baudu M, Le Cloirec P, Martin G (1993) First approach of desorption energies of water and organic molecules onto activated carbon by differential scanning calorimetry studies. Water Res 27:69–76

    Article  CAS  Google Scholar 

  41. Naderi M (2015) Surface Area: Brunauer–Emmett–Teller (BET), In Progress in filtration and separation, Academic Press, New York, pp 585–608

  42. Duan X, Srinivasakannan C, Yang K, Peng J, Zhang L (2012) Effects of heating method and activating agent on the porous structure of activated carbons from coconut shells. Waste and Biomass Valorization 3:131–139

    Article  CAS  Google Scholar 

  43. Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45:651–671

    Article  CAS  Google Scholar 

  44. Ukanwa KS, Patchigolla K, Sakrabani R, Anthony E, Mandavgane S (2019) A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability 11:6204

    Article  CAS  Google Scholar 

  45. Faria PCC, Órfáo JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052

    Article  CAS  Google Scholar 

  46. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  47. Sanderson RT (1976) Chemical bond and bond energies. Academic, New York

    Google Scholar 

  48. Al-Hossainy AF, Sh Zoromba M (2019) Doped-poly (para-nitroaniline-co-aniline): synthesis, semiconductor characteristics, density, functional theory and photoelectric properties. J Alloys Compound 789:670–683

    Article  CAS  Google Scholar 

  49. A. F. Al-Hossainy, M. Sh Zoromba, O. A. El-Gammal, Farid I. El-Dossoki, Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Structural Chemistry 30 (2019) 1–16.

  50. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  51. Maynard AT, Huang M, Rice WG, Covell DG (1998) Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci 95:11578–11583

    Article  CAS  Google Scholar 

  52. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  53. Thabet HKh, Al-Hossainy AF, Imran M (2020) Synthesis, characterization, and DFT modeling of novel organic compound thin films derived from 2-amino-4-(2-hydroxy-3-methoxyphenyl)-4H-thiazolo [3, 2-a][1, 3, 5] triazin-6 (7H)-one. Opt Mater 105:109915

    Article  CAS  Google Scholar 

  54. Abd-Elmageed AAI, Al-Hossainy AF, Fawzy EM, Almutlaq N, Eid MR, Bourezgui A, Abdel-Hamid SMS, Elsharkawy NB, Zwawi M, Abdel-Aziz MH, Bassyouni M (2020) Synthesis, characterization and DFT molecular modeling of doped poly (para-nitroaniline-co-para-toluidine) thin film for optoelectronic devices applications. Opt Mater 99:109593

  55. Magdy A, Fouad YO, Abdel-Aziz MH, Konsowa AH (2017) Synthesis and characterization of Fe3O4/kaolin magnetic nanocomposite and its application in wastewater treatment. J Ind Eng Chem 56:299–311

    Article  CAS  Google Scholar 

  56. Bhattacharyya KG, Gupta SS (2008) Influence of acid activation on adsorption of Ni (II) and Cu (II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chem Eng J 136:1–13

    Article  CAS  Google Scholar 

  57. Khan TA, Dahiya S, Ali I (2012) Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl Clay Sci 69:58–66

    Article  CAS  Google Scholar 

  58. Mahmoud ME, Nabil GM, El-Mallah NM, Bassiouny HI, Kumar S, Abdel-Fattah TM (2016) Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent. Journal of Industrial and Eng Chem 37:156–167

    Article  CAS  Google Scholar 

  59. Sun X, Ou H, Miao C, Chen L (2015) Removal of Sudan dyes from aqueous solution by magnetic carbon nanotubes: equilibrium, kinetic and thermodynamic studies. J Ind Eng Chem 22:373–377

    Article  CAS  Google Scholar 

  60. Zhang Y, Zhu C, Liu F, Yuan Y, Wu H, Li A (2019) Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: a review. Sci Total Environ 646:265–279

    Article  CAS  Google Scholar 

  61. Fosso-Kankeu E, Mittal H, Waanders F, Ray SS (2017) Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents. J Eng Chem 48:151–161

    Article  CAS  Google Scholar 

  62. Doğan M, Alkan M, Turkyїlmaz A, Ozdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148

    Article  CAS  Google Scholar 

  63. Abdel-Aziz MH, Gutub S, Soliman MF, Bassyouni M (2016) Removal of Fe++ from Wastewater Using Sludge-polymer Hybrid Adsorbents. Rocznik Ochrona Środowiska 18:28–45

    Google Scholar 

  64. Liu R, Zhang B, Mei D, Zhang H, Liu J (2011) Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 268:111–116

    Article  CAS  Google Scholar 

  65. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Helmy Abdel-Aziz.

Ethics declarations

Conflict of interest

None of the authors of the manuscript has declared any conflict of interest.

Data availability statements

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, M.H., El-Ashtoukhy, E.Z., Bassyouni, M. et al. DFT and experimental study on adsorption of dyes on activated carbon prepared from apple leaves. Carbon Lett. 31, 863–878 (2021). https://doi.org/10.1007/s42823-020-00187-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00187-1

Keywords

Navigation