Skip to main content

Advertisement

Log in

Optimizing enzymatic catalysts for rapid turnover of substrates with low enzyme sequestration

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Enzymes are central to both metabolism and information processing in cells. In both cases, an enzyme’s ability to accelerate a reaction without being consumed in the reaction is crucial. Nevertheless, enzymes are transiently sequestered when they bind to their substrates; this sequestration limits activity and potentially compromises information processing and signal transduction. In this article, we analyse the mechanism of enzyme–substrate catalysis from the perspective of minimizing the load on the enzymes through sequestration, while maintaining at least a minimum reaction flux. In particular, we ask: which binding free energies of the enzyme–substrate and enzyme–product reaction intermediates minimize the fraction of enzymes sequestered in complexes, while sustaining a certain minimal flux? Under reasonable biophysical assumptions, we find that the optimal design will saturate the bound on the minimal flux and reflects a basic trade-off in catalytic operation. If both binding free energies are too high, there is low sequestration, but the effective progress of the reaction is hampered. If both binding free energies are too low, there is high sequestration, and the reaction flux may also be suppressed in extreme cases. The optimal binding free energies are therefore neither too high nor too low, but in fact moderate. Moreover, the optimal difference in substrate and product binding free energies, which contributes to the thermodynamic driving force of the reaction, is in general strongly constrained by the intrinsic free-energy difference between products and reactants. Both the strategies of using a negative binding free-energy difference to drive the catalyst-bound reaction forward and of using a positive binding free-energy difference to enhance detachment of the product are limited in their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code availability

The codes for generating the figures are available at https://doi.org/10.5281/zenodo.2656526.

References

  • Berg J, Tymoczko J, Stryer L (2002) Protein structure and function. Biochemistry 262:159–173

    Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80(2):225–236

    CAS  PubMed  Google Scholar 

  • Tsai C, Del Sol A, Nussinov R (2009) Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol BioSyst 5(3):207–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561

    CAS  PubMed  Google Scholar 

  • Buckhout-White S, Person C, Medintz I, Goldman E (2018) Restriction enzymes as a target for dna-based sensing and structural rearrangement. ACS Omega 3(1):495–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erb T, Jones P, Bar-Even A (2017) Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 37:56–62

    CAS  PubMed  Google Scholar 

  • Röthlisberger D, Khersonsky O, Wollacott A, Jiang L, DeChancie J, Betker J, Gallaher J, Althoff E, Zanghellini A, Dym O et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190

    PubMed  Google Scholar 

  • Jiang L, Althoff E, Clemente F, Doyle L, Röthlisberger D, Zanghellini A, Gallaher J, Betker J, Tanaka F, Barbas C et al (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel J, Zanghellini A, Lovick H, Kiss G, Lambert A, Clair J, Gallaher J, Hilvert D, Gelb M, Stoddard B et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction. Science 329(5989):309–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13(2):52–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    CAS  PubMed  Google Scholar 

  • Herskowitz I (1995) MAP kinase pathways in yeast: for mating and more. Cell 80:187–197

    CAS  PubMed  Google Scholar 

  • Ouldridge TE, Govern CC, ten Wolde PR (2017) The thermodynamics of computational copying in biochemical systems. Phys Rev X 7:021004

    Google Scholar 

  • Govern CC, ten Wolde PR (2014) Optimal resource allocation in cellular sensing systems. Proc Nat Acad Sci USA 111:17486–17491

    CAS  PubMed  Google Scholar 

  • Armitage JP (1999) Bacterial tactic responses. Adv Microb Physiol 41:229–289

    CAS  PubMed  Google Scholar 

  • Briat C, Gupta A, Khammash M (2016) Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst 2:15–26

    CAS  PubMed  Google Scholar 

  • Encisco G, Kim J (2019)Absolutely robust controllers for stochastic chemical reaction networks. arXiv:1910.03208

  • Cappelletti D, Gupta A, Khammash M (2019) A hidden integral structure endows absolute concentration robust systems with resilience to dynamical concentration disturbances. arXiv:1910.05531

  • Mehta P, Lang AH, Schwab DJ (2016) Landauer in the age of synthetic biology: Energy consumption and information processing in biochemical networks. J Stat Phys 162(5):1153–1166

    Google Scholar 

  • Goldbeter A, Koshland D (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11):6840–6844

    CAS  PubMed  Google Scholar 

  • Huang C, Ferrell J (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93(19):10078–10083

    CAS  PubMed  Google Scholar 

  • Ferrell J, Ha S (2014) Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends Biochem Sci 39(10):496–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayanthi S, Del Vecchio D (2011) Retroactivity attenuation in bio-molecular systems based on timescale separation. IEEE Trans Autom Control 56(4):748–761

    Google Scholar 

  • Tănase-Nicola S, Warren P, Ten Wolde P (2006) Signal detection, modularity, and the correlation between extrinsic and intrinsic noise in biochemical networks. Phys Rev Lett 97(6):068102

    PubMed  Google Scholar 

  • Ventura A, Sepulchre J, Merajver S (2008) A hidden feedback in signaling cascades is revealed. PLoS Comput Biol 4(3):e1000041

    PubMed  PubMed Central  Google Scholar 

  • Del Vecchio D, Ninfa A, Sontag E (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4(1):161

    PubMed  PubMed Central  Google Scholar 

  • Barton J, Sontag E (2013) The energy costs of insulators in biochemical networks. Biophys J 104(6):1380–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Vecchio D, Murray R (2015) Biomolecular feedback systems. Princeton University Press, Princeton

    Google Scholar 

  • Deshpande A, Ouldridge TE (2017) High rates of fuel consumption are not required by insulating motifs to suppress retroactivity in biochemical circuits. Eng Biol 1(2):86–99

    Google Scholar 

  • Meijer L, Joesaar A, Steur E, Engelen W, Santen R, Merkx M, Greef T (2017) Hierarchical control of enzymatic actuators using DNA-based switchable memories. Nat Commun 8(1):1117

    PubMed  PubMed Central  Google Scholar 

  • Henri V (2006) Théorie générale de l’action de quelques diastases par victor henri [cr acad. sci. paris 135 (1902) 916–919]. Comptes rendus Biologies 329(1):47–50

    PubMed  Google Scholar 

  • Menten L, Michaelis M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369

    Google Scholar 

  • Briggs G, Haldane J (1925) A note on the kinetics of enzyme action. Biochem J 19(2):338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnell S (2014) Validity of the Michaelis–Menten equation-steady-state or reactant stationary assumption: that is the question. FEBS J 281(2):464–472

    CAS  PubMed  Google Scholar 

  • Schnell S, Mendoza C (1997) Enzymological considerations for the theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR). J Theor Biol 184(4):433–440

    CAS  PubMed  Google Scholar 

  • Schnell S, Mendoza C (1997) Theoretical description of the polymerase chain reaction. J Theor Biol 188(3):313–318

    CAS  PubMed  Google Scholar 

  • Hill T (1966) Studies in irreversible thermodynamics IV. Diagrammatic representation of steady state fluxes for unimolecular systems. J Theor Biol 10(3):442–459

    CAS  PubMed  Google Scholar 

  • Hill T (1983) Some general principles in free energy transduction. Proc Natl Acad Sci USA 80(10):2922–2925

    CAS  PubMed  Google Scholar 

  • Qian H, Beard D, Liang S (2003) Stoichiometric network theory for nonequilibrium biochemical systems. Eur J Biochem 270(3):415–421

    CAS  PubMed  Google Scholar 

  • Beard D, Babson E, Curtis E, Qian H (2004) Thermodynamic constraints for biochemical networks. J Theor Biol 228(3):327–333

    CAS  PubMed  Google Scholar 

  • Qian H, Beard D (2005) Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys Chem 114(2–3):213–220

    CAS  PubMed  Google Scholar 

  • Beard D, Qian H (2007) Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS ONE 2(1):e144

    PubMed  PubMed Central  Google Scholar 

  • Chaplin M, Bucke C (1990) Enzyme technology. Cambridge University Press, Cambridge

    Google Scholar 

  • Beard D, Qian H (2008) Chemical biophysics: quantitative analysis of cellular systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Voet D, Voet J (2011) Biochemistry, 4th edn. Wiley, New York, p 492

    Google Scholar 

  • Ouldridge TE (2018) The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics. Nat Comput 17(1):3–29

    CAS  PubMed  Google Scholar 

  • Ge H, Qian H (2013) Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems. Phys Rev E 87(6):062125

    Google Scholar 

  • Wachtel A, Rao R, Esposito M (2018) Thermodynamically consistent coarse graining of biocatalysts beyond michaelis–menten. New J Phys 20(4):042002

    Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Fisher ME, Kolomeisky AB (1999) The force exerted by a molecular motor. Proc Natl Acad Sci USA 96(12):6597–6602

    CAS  PubMed  Google Scholar 

  • Astumian R (2015) Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys J 108(2):291–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haldane J (1930) The course of enzymatic reactions and its mathematical theory. In: Enzymes. Longmans, Green and Co., London, pp 74–92

  • Sauro H (2011) Enzyme kinetics for systems biology. Future Skill Software

  • Brown A, Sivak D (2017) Allocating dissipation across a molecular machine cycle to maximize flux. Proc Natl Acad Sci USA 114(42):11057–11062

    CAS  PubMed  Google Scholar 

  • Atkins P, De Paula J (2011) Physical chemistry for the life sciences. Oxford University Press, Oxford

    Google Scholar 

  • Alberty R, Hammes G (1958) Application of the theory of diffusion-controlled reactions to enzyme kinetics. J Phys Chem A 62(2):154–159

    CAS  Google Scholar 

  • Srinivas N, Ouldridge TE, Šulc P, Schaeffer J, Yurke B, Louis A, Doye J, Winfree E (2013) On the biophysics and kinetics of toehold-mediated dna strand displacement. Nucl Acids Res 41(22):10641–10658

    CAS  PubMed  Google Scholar 

  • Norris J (1998) Markov chains, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Lankinen A, Mullor Ruiz I, Ouldridge TE (2020) Implementing non-equilibrium networks with active circuits of duplex catalysts. arXiv:2005.11433

  • Ouldridge TE, Rein ten Wolde P (2017) Fundamental costs in the production and destruction of persistent polymer copies. Phys Rev Lett 118:158103

    PubMed  Google Scholar 

  • Poulton JM, Ouldridge TE (2020) Edge-effects dominate copying thermodynamics for finite-length molecular oligomers. arXiv:2005.11255

  • Zhou L, Kim SC, Ho KH, O’Flaherty DK, Giurgiu C, Wright TH, Szostak JW (2019) Non-enzymatic primer extension with strand displacement. eLife 8:e51888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabello-Garcia J, Bae W, Stan GBV, Ouldridge TE (2020) Handhold-mediated strand displacement: a nucleic acid-based mechanism for generating far-from-equilibrium assemblies through templated reactions. https://doi.org/10.1101/2020.05.22.108571

  • Hopfield J (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71(10):4135–4139

    CAS  PubMed  Google Scholar 

  • Ninio J (1975) Kinetic amplification of enzyme discrimination. Biochimie 57(5):587–595

    CAS  PubMed  Google Scholar 

  • Mckeithan T (1995) Kinetic proofreading in t-cell receptor signal transduction. Proc Natl Acad Sci USA 92(11):5042–5046

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.D. acknowledges support from Roth scholarship during his time at the Department of Mathematics in Imperial College London and Van Vleck Visiting Assistant Professorship from the Department of Mathematics at Wisconsin Madison. T.E.O. is supported by a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Ouldridge.

Additional information

Communicated by Michael Hinczewski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is intended to be part of the special issue on Thermodynamics and Information Theory in Biology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, A., Ouldridge, T.E. Optimizing enzymatic catalysts for rapid turnover of substrates with low enzyme sequestration. Biol Cybern 114, 653–668 (2020). https://doi.org/10.1007/s00422-020-00846-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-020-00846-6

Navigation