Skip to main content
Log in

Human burials can affect soil elemental composition for millennia—analysis of necrosols from the Corded Ware Culture graveyard in the Czech Republic

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

How long decomposed buried human bodies affect soil elemental composition is so far not well-known. Using portable X-ray fluorescence spectrometry, we determined the elemental composition of sandy necrosols from a Corded Ware Culture (ca 2800–2500 BCE) graveyard, Chudeřín, Czech Republic. The elemental compositions of soils in the grave infills were studied and compared with arable and subsoil layers. After removal of the arable layer, infills of graves were identified by the black color in contrast with their reddish surroundings. The burials affected the content of elements even after more than 4500 years. Increased C contents compared with arable and subsoil layers were recorded only close to bones. The lowest P content was in grave infill, where soft tissues decomposed, because of P leaching. Therefore, increased P content in the infill of the prehistoric graves mentioned by previous authors is not a reliable indicator of soft tissue decomposition. In the acidic environment, P and Ca released from bones partly fixed in the grave infill ≤ 5 cm to bones. The high contents of P and Ca in bones and soils close to bones were a source of these elements for plants, indicated by a high density of fine roots. The highest contents of trace elements (Mn, Cu, As, and Pb) were in the arable layer because of recent disposition. The most reliable soft tissue decomposition indicator was an increased Zn content in the grave infill. The multi-elemental analyses of prehistoric necrosols were neglected so far and require further detailed research as the chemical signatures are well-preserved for millennia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Maksoud G, Abdel-Hady M (2011) Effect of burial environment on crocodile bones from Hawara excavation. J Cult Herit 12:180–189. https://doi.org/10.1016/j.culher.2010.12.002

    Article  Google Scholar 

  • Abu Dalou AY, ElSerogy AM, Al-Shorman AA, Alrousan M, Khwaileh A (2017) Bioarchaeology, conservation and display of a 16K-human skeleton, Jordan. Mediterr Archaeol Archaeom 17:251–263. https://doi.org/10.5281/zenodo.400781

    Article  Google Scholar 

  • Allmäe R, Limbo-Simovart J, Heapost L, Vers E (2012) The content of chemical elements in archaeological human bones as source of nutrition research. Pap Anthropol XXI:27–49

    Article  Google Scholar 

  • Amuno SA, Amuno MM (2014) Geochemical assessment of two excavated mass graves in Rwanda. A pilot study. Soil Sediment Contam 23:144–165. https://doi.org/10.1080/15320383.2013.786021

    Article  Google Scholar 

  • Anne Marie H (2019) Elemental composition of the human body by mass. Retrieved from https://www.thoughtco.com/elemental-composition-human-body-by-mass-608192. Accessed 20 March 2019

  • Asare MO, Horák J, Šmejda L, Janovský MP, Hejcman M (2020) A medieval hillfort as an island of extraordinary fertile archaeological dark earth soil in the Czech Republic. Eur J Soil Sci. https://doi.org/10.1111/ejss.12965

  • Barton CD, Karathanasis AD (2002) Clay minerals. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York, pp 187–192

    Google Scholar 

  • Bednarek R, Jankowski M, Kwiatkowska A, Markiewicz M, Świtoniak M (2004) The diversity of phosphorus in soils within the complex in Kałdus settlement and its surroundings. In: Chudziak, W (eds.) Natural and archaeological studies. Seria Mons Sancti Laurentii, 2. Wyd. UMK: 199–208 (in Polish)

  • Berna F, Alan M, Stephen W (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31(7):867–882. https://doi.org/10.1016/j.jas.2003.12.003

    Article  Google Scholar 

  • Brady MA, Lewis MP, Mudera V (2008) Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct. J Tissue Eng Regen M 2:408–417. https://doi.org/10.1002/term.112

    Article  Google Scholar 

  • Buddhachat K, Klinhom S, Siengdee P, Brown JL, Nomsiri R, Kaewmong P, Chatchote TC, Mahakkanukrauh P, Nganvongpanit K (2016) Elemental analysis of bone, teeth, horn, and antler in different animal species using non-invasive handheld x-ray fluorescence. PLoS One 11:e0155458. https://doi.org/10.1371/journal.pone.0155458

    Article  Google Scholar 

  • Burns A, Prickering MD, Green KA, Pinder AP, Gestsdóttir H, Usai MR, Brothwell DR, Keely BJ (2017) Micromorphological and chemical investigation of late-Viking age grave fills at Hofstaðir, Iceland. Geoderma 306:183–194. https://doi.org/10.1016/j.geoderma.2017.06.021

    Article  Google Scholar 

  • Cannell RJS, Gustavsen L, Kristiansen M, Nau E (2018) Delineating an unmarked graveyard by high-resolution GPR and pXRF prospection the Medieval church site of Furulund in Norway. J Comput Appl Archaeol 1:1–18. https://doi.org/10.5334/jcaa

    Article  Google Scholar 

  • Canti M, Huisman DJ (2015) Scientific advances in geoarchaeology during the last twenty years. J Archaeol Sci 56:96–108. https://doi.org/10.1016/j.jas.2015.02.024

    Article  Google Scholar 

  • Collins M, Nielsen C, Hiller J, Smith C, Prijodich R, Wess T, Turner-Walker G (2002) The survival of organic matter in bones a review. Archaeometry 44:383–394. https://doi.org/10.1111/1475-4754.t01-1-00071

    Article  Google Scholar 

  • Cook HE, Johnson PD, Matti JC, Zemmels I (1975) Methods of sample preparation and x-ray diffraction data analysis, X-Ray mineralogy laboratory, Deep Sea Drilling Project, University Of California, Riverside. Initial Rep DSDP 28:999–1007. https://doi.org/10.2973/dsdp.proc.28.app4.1975

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Cortesi M, Shilstein S, Volkov A, Checkit R (2008) Clinical assessment of the cancer diagnostic value of prostatic zinc: a comprehensive needle-biopsy study. Prostrate 68:994–1006

    Article  Google Scholar 

  • Crenshaw TD (2001) Calcium, phosphorus, vitamin D, and vitamin K in swine nutrition. In: Lewis AJ, Southern LL (eds) Swine nutrition, 2nd edn. CRC Press, Boca Raton, pp 187–212

    Google Scholar 

  • Crowther J (2002) The experimental earthwork at Wareham, Dorset after 33 years: retention and leaching of phosphate released in the decomposition of buried bone. J Archaeol Sci 29:405–411. https://doi.org/10.1006/jasc.2002.0728

    Article  Google Scholar 

  • Cunnane SC (1990) Zinc: clinical and biochemical significance. CRC Press, Boca Raton

    Google Scholar 

  • Czech Hydrometeorological Institute (2020) Meteorology and climatology. http://portal.chmi.cz/?tab=0&l=en. Accessed 20 June 2020

  • Dent BB, Knight MJK (1998) Cemeteries: a special kind of landfill. The context of their sustainable management. Groundwater: Sustainable solutions Conference of the International Association of Hydrogeologists, Melbourne, pp 451–456

  • Dent BB, Forbes SL, Stuart BH (2004) Review of human decomposition process in soil. Environ Geol 45:576–585. https://doi.org/10.1007/s00254-003-0913-z

    Article  Google Scholar 

  • Dobeš M, Limburský P (2013) Pohřebiště staršího eneolitu a šňůrové keramiky ve Vliněvsi, Archeologické studijní materiály 22 [Burial ground of the older Eneolithic and string pottery in Vliněvs, Archaeological study materials 22]. Archeologický ústav AV ČR, v.v.I, Praha

  • Ernée M, Majer A (2009) Burial rites: uniform or diverse? Interpretation of the results of phosphate soil analysis at the Únětice culture burial site in Prague 9 – Miškovice. Archeologicke Rozhledy 61:493–508

    Google Scholar 

  • FAO (2001) Zinc. In: Human vitamin and mineral requirements. Report of a Joint FAO/WHO expert consultation, Bangkok, Thailand

  • Farnum JF, Glascock MD, Sandford MK, Gerristen S (1995) Trace elements in human bones and associated soil using NAA. J Radioanal Nucl Chem 196:267–274. https://doi.org/10.1007/BF02038044

    Article  Google Scholar 

  • Frahm E, Monnier GF, Jelinski NA, Fleming EP, Barber BL, Lambon JB (2016) Chemical soil surveys at the Bremer site (Dakota County, Minnesota, USA) measuring phosphorous content of sediment by portable XRF and ICP-OES. J Archaeol Sci 75:115–138. https://doi.org/10.1016/j.jas.2016.10.004

    Article  Google Scholar 

  • Furholt M (2003) Die absolutchronologische Datierung der Schnurkeramik in Mitteleuropa und Südskandinavien. Universitätsforschungen zur Prähistorischen Archäologie [The absolute chronological dating of the cord ceramics in Central Europe and Southern Scandinavia. University research on prehistoric archeology 101]. Bonn Habelt

  • Furholt M (2019) Re-integrating archaeology a contribution to aDNA studies and the migration discourse on the 3rd millennium BC in Europe. Proc Prehist Soc 85:1–15. https://doi.org/10.1017/ppr.2019.4

    Article  Google Scholar 

  • Gauss RK, Bátora J, Nowaczinski E, Rassmann K, Schukraft G (2013) The Early Bronze Age settlement of Fidvár, Vráble (Slovakia): reconstructing prehistoric settlement patterns using portable XRF. J Archaeol Sci 40:2942–2960. https://doi.org/10.1016/j.jas.2013.01.029

    Article  Google Scholar 

  • Gonzalez-Rodriguez J, Fowler G (2013) A study on the discrimination of human skeletons using X-ray fluorescence and chemometric tools in chemical anthropology. Forensic Sci Int 231:407.e1–407.e6. https://doi.org/10.1016/j.forsciint.2013.04.035

    Article  Google Scholar 

  • Graf A (1986) Flora und vegetation der Friedhöfe in Berlin (West). Verhandlungen des Berliner Botanischen Vereins 5:1–210

    Google Scholar 

  • Grattan JP, Gilbertson DD, Waller JH, Adams RB (2014) The geoarchaeology of waste heaps from the ancient mining and beneficiation of copper-rich ores in the Wadi Khalid in southern Jordan. J Archaeol Sci 46:428–433. https://doi.org/10.1016/j.jas.2013.08.001

    Article  Google Scholar 

  • Hayes K (2013) Parameters in the use of pXRF for archaeological site prospection: a case study at the Reaume Fort Site, Central Minnesota. J Archaeol Sci 40:3193–3211. https://doi.org/10.1016/j.jas.2013.04.008

    Article  Google Scholar 

  • Heckroodt R (1991) Clay and clay minerals in South Africa. J South Afr Inst Min Metall 9:343–363

    Google Scholar 

  • Hlavica M, Petřík J, Prokeš L, Šabatová K (2011) Evaluation of phosphate analysis and the Brongers method of detecting decomposed wood, human tissue, and organic goods in a Bell Beaker grave at Těšetice-Kyjovice, Czech Republic. IANSA II:85–94. https://doi.org/10.24916/iansa.2011.2.1

    Article  Google Scholar 

  • Hodges RM, MacDonald NS, Nusbaum R, Stearns R, Ezmirlian F, Spain P, McArthur C (1950) The strontium content of human bones. J Biol Chem 185:519–524

    Google Scholar 

  • Holliday VT, Gartner WG (2007) Methods of soil P analysis in archaeology. J Archaeol Sci 34:301–333. https://doi.org/10.1016/j.jas.2006.05.004

    Article  Google Scholar 

  • Howard J (2017) Anthropogenic soils. Springer International, Cham, pp 161–162

    Book  Google Scholar 

  • Hunt AMW, Speakman RJ (2015) Portable XRF analysis of archaeological sediments and ceramics. J Archaeol Sci 53:626–638. https://doi.org/10.1016/j.jas.2014.11.031

    Article  Google Scholar 

  • Janaway RC, Percival SL, Wilson AS (2009) Decomposition of human remains. In: Percival SL (ed) Microbiology and Aging. Humana Press, pp 313–334

  • Jonker C, Olivier J (2012) Mineral contamination from cemetery soils a case study of Zandfontein cemetery, South Africa. Int J Environ Res Public Health 9:511–520. https://doi.org/10.3390/ijerph9020511

    Article  Google Scholar 

  • Kalnicky DJ, Singhvi R (2001) Field portable XRF analysis of environmental samples. J Hazard Mater 83:93–122. https://doi.org/10.1016/S0304-3894(00)00330-7

    Article  Google Scholar 

  • Kempane J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb, and Zn in soil using amendments—a review. Waste Manag 28:215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    Article  Google Scholar 

  • Kolář J, Jarošová I, Dreslerová G, Drozdová E, Dobisíková M (2012) Food strategies in Central Moravia (Czech Republic) during the Final Eneolithic. A case study of Corded Ware culture communities. Archeologické Rozhledy LXIV:237–264

    Google Scholar 

  • Kristiansen K, Allentoft ME, Frei MK, Iversen R, Johannsen NN, Kroonen G, Pospieszny L, Douglas-Price T, Rasmussen S, Sjorgren KG, Sikora M, Willerslev E (2017) Re-theorizing mobility and the formation of culture and language among the Corded Ware Culture in Europe. Antiquity 91:334–347. https://doi.org/10.15184/aqy.2017.17

    Article  Google Scholar 

  • Lengfelder F, Grupe G, Stallauer A, Huth R, Sollner F (2018) Modelling strontium isotopes in past biospheres- assessment of bioavailable Sr-87/Sr-86 ratios in local archaeological vertebrates based on environmental signatures. Sci Total Environ 648:236–252. https://doi.org/10.1016/j.scitotenv.2018.08.014

    Article  Google Scholar 

  • Limburský P (2015) Variability of grave construction arrangements in Vliněves burial site. On the issue of the phosphate analyses interpretation. In Báthora J, Tóth P: Keď Bronz vystriedal meď. Archaeologica Slovaca Monographiae Communicationes Tomus XVIII, Bratislava – Nitra, pp. 287–294

  • Majgier L, Rahmonov O (2012) Selected chemical properties of Necrosols from the abandoned cemeteries Slabowo and Szymonka Great Mazurian Lakes District. Bull Geogr – Phys Geogr Series 5:43–55. https://doi.org/10.2478/v10250-012-0003-8

    Article  Google Scholar 

  • Majgier L, Rahmonov O, Bednarek R (2013) Features of abandoned cemetery soils on sandy substrates in Northern Poland. Eurasian Soil Sci 47:621–629. https://doi.org/10.1134/S1064229314060064

    Article  Google Scholar 

  • Mann J, Truswell AS (2002) Essentials of human nutrition. Oxford University Press, New York

    Google Scholar 

  • McCawley JC, McKerrell H (1971) Soil phosphorus levels at archaeological sites. Proc Soc 2:301–306

    Google Scholar 

  • Metcalf J, Carter D, Knight R (2016) Microbiology of death. Curr Biol 26:R561–R563. https://doi.org/10.1016/j.cub.2016.03.042

    Article  Google Scholar 

  • Mitchell HH, Hamilton TS, Steggerda FR, Bean HW (1945) The chemical composition of adult human body and it’s bearing on the biochemistry of growth. J Biol Chem 158:625–637

    Google Scholar 

  • Miyazaki A, Balint I, Nakano Y (2003) Solid-liquid interfacial reaction of Zn2+ ions on the surface of amorphous aluminosilicates with various Al/Si ratios. Geochim Cosmochim Acta 67:3833–3844. https://doi.org/10.1016/S0016-7037(03)00373-9

    Article  Google Scholar 

  • Motsara MR, Roy RN (2008) Guide to laboratory establishment for plant nutrient analysis. http://www.fao.org/3/a-i0131e.pdf. Accessed on 24 June 2020

  • Municipal Authority Žatec (2020) Žatec. https://www.mesto-zatec.cz. Accessed 5 February 2020

  • Neustupný E (2013) The Corded Ware culture. In: Neustupný E, Dobeš M, Turek J, Zápotocký M (eds) The prehistory of Bohemia 3. The Eneolithic. Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, pp 130–154

    Google Scholar 

  • Newlander K, Goodale N, Jones GT, Bailey DG (2015) Empirical study of the effect of count time on the precision and accuracy of pXRF data. J Archaeol Sci Report 3:534–548. https://doi.org/10.1016/j.jasrep.2015.07.007

    Article  Google Scholar 

  • Nganvongpanit K, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Mahakkanukrauh P (2016) Preliminary study to test the feasibility of sex identification of human (Homo sapiens) bones based on differences in elemental profiles determined by handheld X-ray fluorescence. Biol Trace Elem Res 173:21–29

    Article  Google Scholar 

  • Niziolomski J, Rickson J, Marquez-Grant N, Pawlett M (2016) Soil science related to human body after death. Cranfield Forensic Institute, Cranfield University, UK, pp 1–12

    Google Scholar 

  • Novák M, Erel Y, Zemanova L, Bottrell S, Adamova M (2008) A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic. Atmos Environ 42:8997–9006. https://doi.org/10.1016/j.atmosenv.2008.09.031

    Article  Google Scholar 

  • Parfitt RL (1989) Phosphate reactions with natural allophone, ferrihydrite, and goethite. Eur J Soil Sci 40:359–369. https://doi.org/10.1111/j.1365-2389.1989.tb01280.x

    Article  Google Scholar 

  • Parsons C, Margui Grabulosa E, Pili E, Floor GH, Roman-Ross G, Charlet L (2012) Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry considerations for sample preparation and measurement conditions. J Hazard Mater 262:1213–1222. https://doi.org/10.1016/j.jhazmat.2012.07.001

    Article  Google Scholar 

  • Patrick J (1977) Assessment of body potassium stores. Kidney Int 6:476–490. https://doi.org/10.1038/ki.1977.65

    Article  Google Scholar 

  • Perrott KW (1977) Surface charge characteristics of amorphous aluminosilicates. Clay Clay Miner 25:417–421. https://doi.org/10.1346/CCMN.1977.0250607

    Article  Google Scholar 

  • Pickering MD, Ghislandi S, Usai MR, Wilson C, Connelly P, Brothwell DR, Keely BJ (2018) Signatures of degraded body tissues and environmental conditions in grave soils from a Roman and an Anglo-Scandinavian age burial from Hungate, York. J Archaeol Sci 99:87–98. https://doi.org/10.1016/j.jas.2018.08.007

    Article  Google Scholar 

  • Pierce C, Adams KR, Stewart JD (1998) Determining the fuel constituents of ancient 556 hearth ash via ICP-AES analysis. J Archaeol Sci 25:493–503. https://doi.org/10.1006/jasc.1997.0252

    Article  Google Scholar 

  • Piličiauskas G, Asheichyk V, Osipowicz G, Skipitytė R, Varul L, Kozakaitė J, Kryvaltsevich M, Vaitovich A, Lakiza V, Šapolaitė J, Ežerinskis Ž, Pamazanau M, Lucquin A, Craig OE, Robson HK (2018) The Corded Ware culture in the Eastern Baltic new evidence on chronology, diet, beaker, bone and flint tool function. J Archaeol Sci Rep 21:538–552. https://doi.org/10.1016/j.jasrep.2018.08.023

    Article  Google Scholar 

  • Regional museum KA Polánka (2016) Look at the archaeologists right under the hoe. http//www.muzeumzatec.cz/clanky-podivejte-se-archeologum-primo-pod motycky.html. Accessed 5 January 2018

  • Sjögren KG, Price TD, Kristiansen K (2016) Diet and mobility in the Corded Ware of Central Europe. PLoS One 11:e0155083. https://doi.org/10.1371/journal.pone.0155083

    Article  Google Scholar 

  • Šmejda L, Hejcman M, Horák J, Shai I (2017) Ancient settlement activities as important sources of nutrients (P, K, S, Zn, and Cu) in Eastern Mediterranean ecosystems – the case of biblical.Tel Burna, Israel. Catena 156:62–73. https://doi.org/10.1016/j.catena.2017.03.024

    Article  Google Scholar 

  • Šmejda L, Hejcman M, Horák J, Shai I (2018) Multi-element mapping of anthropogenically modified soils and sediments at the Bronze to Iron Ages site of Tel Burna in the southern Levant. Quat Int 483:111–123. https://doi.org/10.1016/j.quaint.2017.11.005

    Article  Google Scholar 

  • Sobocká J (2004) Necrosol as a new anthropogenic soil type. In: soil Anthropization VII, Bratislava, Slovakia. Pp. 107–112

  • Speakman RJ, Shackley SM (2013) Silo science and portable XRF in archaeology: a response to Frahm. J Archaeol Sci 40:1435–1443. https://doi.org/10.1016/j.jas.2012.09.033

    Article  Google Scholar 

  • Spongberg A, Becks P (2000) Inorganic soil contamination from cemetery leachate. Water Air Soil Pollut 117:313–327. https://doi.org/10.1023/A:1005186919370

    Article  Google Scholar 

  • Tong KW (2000) Introduction to clay minerals and science. Earth Science. https://www.oakton.edu/user/4/billtong/eas100/clays.htm. Accessed 28 June 2020

  • Tsonev T, Lidon FC (2012) Zinc in plants - an overview. Emir J Food Agric 24:322–333

    Google Scholar 

  • Ucisik AS, Rushbrook P (1998) The impact of cemeteries on the environment and public health: an introduction briefing. World Health Organization, Copenhagen

    Google Scholar 

  • Ulmanu M, Anger I, Gamenț E, Mihalache M, Plopeanu G, Ilie L (2011) Rapid determination of some heavy metals in soil using an x-ray fluorescence portable instrument. Res J Agric Sci 43:235–241

    Google Scholar 

  • Yamagata N (1962) The concentration of common cesium and rubidium in human body. J Radiat Res 3:9–30. https://doi.org/10.1269/jrr.3.9

    Article  Google Scholar 

Download references

Funding

This work received support from the project HERA. 15.055 (DEEPDEAD: Deploying the Dead-Artefacts and Human Bodies in Socio-Cultural Transformations). The project also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 649307. Michal Hejcman was supported by project IGA 20184218 provided by the Faculty of Environmental Sciences, Czech University of Life Sciences Prague. Jan Horák was supported by Geochemical insight into non-destructive archaeological research” (LTC19016) of subprogram INTER‐COST (LTC19) of program INTEREXCELLENCE by Ministry of Education, Youth and Sport of the Czech Republic.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Michael O. Asare, Michal Hejcman. Methodology: Michael O. Asare, Petr Holodňák, Miroslav Černý, Michal Hejcman. Formal analysis and investigation Michael O. Asare, Petr Holodňák, Miroslav Černý, Vilém Pavlů, Michal Hejcman. Writing—original draft preparation: Michael O. Asare, Michal Hejcman. Writing—review and editing: Michael O. Asare, Michal Hejcman. Funding acquisition: Jan Horák, , Ladislav Šmejda, Michal Hejcman. Supervision: Michal Hejcman.

Corresponding author

Correspondence to Michal Hejcman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asare, M.O., Šmejda, L., Horák, J. et al. Human burials can affect soil elemental composition for millennia—analysis of necrosols from the Corded Ware Culture graveyard in the Czech Republic. Archaeol Anthropol Sci 12, 255 (2020). https://doi.org/10.1007/s12520-020-01211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01211-1

Keywords

Navigation